Commit
·
842a99f
1
Parent(s):
dcfd5bb
extract one-shot generation
Browse files- Dockerfile +1 -0
- app.py +165 -163
- one_shot_generation.py +196 -0
Dockerfile
CHANGED
|
@@ -142,6 +142,7 @@ COPY --chown=appuser:appuser app.py /home/appuser/app/app.py
|
|
| 142 |
COPY --chown=appuser:appuser utils.py /home/appuser/app/utils.py
|
| 143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
| 144 |
|
|
|
|
| 145 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
| 146 |
|
| 147 |
USER appuser
|
|
|
|
| 142 |
COPY --chown=appuser:appuser utils.py /home/appuser/app/utils.py
|
| 143 |
COPY --chown=appuser:appuser jam_worker.py /home/appuser/app/jam_worker.py
|
| 144 |
|
| 145 |
+
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
| 146 |
COPY --chown=appuser:appuser documentation.html /home/appuser/app/documentation.html
|
| 147 |
|
| 148 |
USER appuser
|
app.py
CHANGED
|
@@ -46,6 +46,8 @@ from utils import (
|
|
| 46 |
)
|
| 47 |
|
| 48 |
from jam_worker import JamWorker, JamParams, JamChunk
|
|
|
|
|
|
|
| 49 |
import uuid, threading
|
| 50 |
|
| 51 |
import logging
|
|
@@ -560,169 +562,169 @@ try:
|
|
| 560 |
except Exception:
|
| 561 |
_HAS_LOUDNORM = False
|
| 562 |
|
| 563 |
-
# ----------------------------
|
| 564 |
-
# Main generation (single combined style vector)
|
| 565 |
-
# ----------------------------
|
| 566 |
-
def generate_loop_continuation_with_mrt(
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
):
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
# untested.
|
| 655 |
-
# not sure how it will retain the input bpm. we may want to use a metronome instead of silence. i think google might do that.
|
| 656 |
-
# does a generation with silent context rather than a combined loop
|
| 657 |
-
def generate_style_only_with_mrt(
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
):
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
| 722 |
-
|
| 723 |
-
|
| 724 |
-
|
| 725 |
-
|
| 726 |
|
| 727 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
| 728 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
from jam_worker import JamWorker, JamParams, JamChunk
|
| 49 |
+
from one_shot_generation import generate_loop_continuation_with_mrt, generate_style_only_with_mrt
|
| 50 |
+
|
| 51 |
import uuid, threading
|
| 52 |
|
| 53 |
import logging
|
|
|
|
| 562 |
except Exception:
|
| 563 |
_HAS_LOUDNORM = False
|
| 564 |
|
| 565 |
+
# # ----------------------------
|
| 566 |
+
# # Main generation (single combined style vector)
|
| 567 |
+
# # ----------------------------
|
| 568 |
+
# def generate_loop_continuation_with_mrt(
|
| 569 |
+
# mrt,
|
| 570 |
+
# input_wav_path: str,
|
| 571 |
+
# bpm: float,
|
| 572 |
+
# extra_styles=None,
|
| 573 |
+
# style_weights=None,
|
| 574 |
+
# bars: int = 8,
|
| 575 |
+
# beats_per_bar: int = 4,
|
| 576 |
+
# loop_weight: float = 1.0,
|
| 577 |
+
# loudness_mode: str = "auto",
|
| 578 |
+
# loudness_headroom_db: float = 1.0,
|
| 579 |
+
# intro_bars_to_drop: int = 0, # <— NEW
|
| 580 |
+
# ):
|
| 581 |
+
# # Load & prep (unchanged)
|
| 582 |
+
# loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
| 583 |
+
|
| 584 |
+
# # Use tail for context (your recent change)
|
| 585 |
+
# codec_fps = float(mrt.codec.frame_rate)
|
| 586 |
+
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
| 587 |
+
# loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
| 588 |
+
|
| 589 |
+
# tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
|
| 590 |
+
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
| 591 |
+
|
| 592 |
+
# # Bar-aligned token window (unchanged)
|
| 593 |
+
# context_tokens = make_bar_aligned_context(
|
| 594 |
+
# tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
|
| 595 |
+
# ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
|
| 596 |
+
# )
|
| 597 |
+
# state = mrt.init_state()
|
| 598 |
+
# state.context_tokens = context_tokens
|
| 599 |
+
|
| 600 |
+
# # STYLE embed (optional: switch to loop_for_context if you want stronger “recent” bias)
|
| 601 |
+
# loop_embed = mrt.embed_style(loop_for_context)
|
| 602 |
+
# embeds, weights = [loop_embed], [float(loop_weight)]
|
| 603 |
+
# if extra_styles:
|
| 604 |
+
# for i, s in enumerate(extra_styles):
|
| 605 |
+
# if s.strip():
|
| 606 |
+
# embeds.append(mrt.embed_style(s.strip()))
|
| 607 |
+
# w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
| 608 |
+
# weights.append(float(w))
|
| 609 |
+
# wsum = float(sum(weights)) or 1.0
|
| 610 |
+
# weights = [w / wsum for w in weights]
|
| 611 |
+
# combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
| 612 |
+
|
| 613 |
+
# # --- Length math ---
|
| 614 |
+
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
| 615 |
+
# total_secs = bars * seconds_per_bar
|
| 616 |
+
# drop_bars = max(0, int(intro_bars_to_drop))
|
| 617 |
+
# drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
|
| 618 |
+
# gen_total_secs = total_secs + drop_secs # generate extra
|
| 619 |
+
|
| 620 |
+
# # Chunk scheduling to cover gen_total_secs
|
| 621 |
+
# chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
| 622 |
+
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
|
| 623 |
+
|
| 624 |
+
# # Generate
|
| 625 |
+
# chunks = []
|
| 626 |
+
# for _ in range(steps):
|
| 627 |
+
# wav, state = mrt.generate_chunk(state=state, style=combined_style)
|
| 628 |
+
# chunks.append(wav)
|
| 629 |
+
|
| 630 |
+
# # Stitch continuous audio
|
| 631 |
+
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
| 632 |
+
|
| 633 |
+
# # Trim to generated length (bars + dropped bars)
|
| 634 |
+
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
| 635 |
+
|
| 636 |
+
# # 👉 Drop the intro bars
|
| 637 |
+
# if drop_secs > 0:
|
| 638 |
+
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
| 639 |
+
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
| 640 |
+
|
| 641 |
+
# # Final exact-length trim to requested bars
|
| 642 |
+
# out = hard_trim_seconds(stitched, total_secs)
|
| 643 |
+
|
| 644 |
+
# # Final polish AFTER drop
|
| 645 |
+
# out = out.peak_normalize(0.95)
|
| 646 |
+
# apply_micro_fades(out, 5)
|
| 647 |
+
|
| 648 |
+
# # Loudness match to input (after drop) so bar 1 sits right
|
| 649 |
+
# out, loud_stats = match_loudness_to_reference(
|
| 650 |
+
# ref=loop, target=out,
|
| 651 |
+
# method=loudness_mode, headroom_db=loudness_headroom_db
|
| 652 |
+
# )
|
| 653 |
+
|
| 654 |
+
# return out, loud_stats
|
| 655 |
+
|
| 656 |
+
# # untested.
|
| 657 |
+
# # not sure how it will retain the input bpm. we may want to use a metronome instead of silence. i think google might do that.
|
| 658 |
+
# # does a generation with silent context rather than a combined loop
|
| 659 |
+
# def generate_style_only_with_mrt(
|
| 660 |
+
# mrt,
|
| 661 |
+
# bpm: float,
|
| 662 |
+
# bars: int = 8,
|
| 663 |
+
# beats_per_bar: int = 4,
|
| 664 |
+
# styles: str = "warmup",
|
| 665 |
+
# style_weights: str = "",
|
| 666 |
+
# intro_bars_to_drop: int = 0,
|
| 667 |
+
# ):
|
| 668 |
+
# """
|
| 669 |
+
# Style-only, bar-aligned generation using a silent context (no input audio).
|
| 670 |
+
# Returns: (au.Waveform out, dict loud_stats_or_None)
|
| 671 |
+
# """
|
| 672 |
+
# # ---- Build a 10s silent context, tokenized for the model ----
|
| 673 |
+
# codec_fps = float(mrt.codec.frame_rate)
|
| 674 |
+
# ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
| 675 |
+
# sr = int(mrt.sample_rate)
|
| 676 |
+
|
| 677 |
+
# silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
|
| 678 |
+
# tokens_full = mrt.codec.encode(silent).astype(np.int32)
|
| 679 |
+
# tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
| 680 |
+
|
| 681 |
+
# state = mrt.init_state()
|
| 682 |
+
# state.context_tokens = tokens
|
| 683 |
+
|
| 684 |
+
# # ---- Style vector (text prompts only, normalized weights) ----
|
| 685 |
+
# prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
|
| 686 |
+
# if not prompts:
|
| 687 |
+
# prompts = ["warmup"]
|
| 688 |
+
# sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
| 689 |
+
# embeds, weights = [], []
|
| 690 |
+
# for i, p in enumerate(prompts):
|
| 691 |
+
# embeds.append(mrt.embed_style(p))
|
| 692 |
+
# weights.append(sw[i] if i < len(sw) else 1.0)
|
| 693 |
+
# wsum = float(sum(weights)) or 1.0
|
| 694 |
+
# weights = [w / wsum for w in weights]
|
| 695 |
+
# style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
|
| 696 |
+
|
| 697 |
+
# # ---- Target length math ----
|
| 698 |
+
# seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
| 699 |
+
# total_secs = bars * seconds_per_bar
|
| 700 |
+
# drop_bars = max(0, int(intro_bars_to_drop))
|
| 701 |
+
# drop_secs = min(drop_bars, bars) * seconds_per_bar
|
| 702 |
+
# gen_total_secs = total_secs + drop_secs
|
| 703 |
+
|
| 704 |
+
# # ~2.0s chunk length from model config
|
| 705 |
+
# chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
|
| 706 |
+
|
| 707 |
+
# # Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
|
| 708 |
+
# steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
|
| 709 |
+
|
| 710 |
+
# chunks = []
|
| 711 |
+
# for _ in range(steps):
|
| 712 |
+
# wav, state = mrt.generate_chunk(state=state, style=style_vec)
|
| 713 |
+
# chunks.append(wav)
|
| 714 |
+
|
| 715 |
+
# # Stitch & trim to exact musical length
|
| 716 |
+
# stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
| 717 |
+
# stitched = hard_trim_seconds(stitched, gen_total_secs)
|
| 718 |
+
|
| 719 |
+
# if drop_secs > 0:
|
| 720 |
+
# n_drop = int(round(drop_secs * stitched.sample_rate))
|
| 721 |
+
# stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
| 722 |
+
|
| 723 |
+
# out = hard_trim_seconds(stitched, total_secs)
|
| 724 |
+
# out = out.peak_normalize(0.95)
|
| 725 |
+
# apply_micro_fades(out, 5)
|
| 726 |
+
|
| 727 |
+
# return out, None # loudness stats not applicable (no reference)
|
| 728 |
|
| 729 |
def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""):
|
| 730 |
extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()]
|
one_shot_generation.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
One-shot music generation functions for MagentaRT.
|
| 3 |
+
|
| 4 |
+
This module contains the core generation functions extracted from the main app
|
| 5 |
+
that can be used independently for single-shot music generation tasks.
|
| 6 |
+
"""
|
| 7 |
+
import math
|
| 8 |
+
import numpy as np
|
| 9 |
+
from magenta_rt import audio as au
|
| 10 |
+
from utils import (
|
| 11 |
+
match_loudness_to_reference,
|
| 12 |
+
stitch_generated,
|
| 13 |
+
hard_trim_seconds,
|
| 14 |
+
apply_micro_fades,
|
| 15 |
+
make_bar_aligned_context,
|
| 16 |
+
take_bar_aligned_tail
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def generate_loop_continuation_with_mrt(
|
| 21 |
+
mrt,
|
| 22 |
+
input_wav_path: str,
|
| 23 |
+
bpm: float,
|
| 24 |
+
extra_styles=None,
|
| 25 |
+
style_weights=None,
|
| 26 |
+
bars: int = 8,
|
| 27 |
+
beats_per_bar: int = 4,
|
| 28 |
+
loop_weight: float = 1.0,
|
| 29 |
+
loudness_mode: str = "auto",
|
| 30 |
+
loudness_headroom_db: float = 1.0,
|
| 31 |
+
intro_bars_to_drop: int = 0,
|
| 32 |
+
):
|
| 33 |
+
"""
|
| 34 |
+
Generate a continuation of an input loop using MagentaRT.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
mrt: MagentaRT instance
|
| 38 |
+
input_wav_path: Path to input audio file
|
| 39 |
+
bpm: Beats per minute
|
| 40 |
+
extra_styles: List of additional text style prompts (optional)
|
| 41 |
+
style_weights: List of weights for style prompts (optional)
|
| 42 |
+
bars: Number of bars to generate
|
| 43 |
+
beats_per_bar: Beats per bar (typically 4)
|
| 44 |
+
loop_weight: Weight for the input loop's style embedding
|
| 45 |
+
loudness_mode: Loudness matching method ("auto", "lufs", "rms", "none")
|
| 46 |
+
loudness_headroom_db: Headroom in dB for peak limiting
|
| 47 |
+
intro_bars_to_drop: Number of intro bars to generate then drop
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Tuple of (au.Waveform output, dict loudness_stats)
|
| 51 |
+
"""
|
| 52 |
+
# Load & prep (unchanged)
|
| 53 |
+
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
|
| 54 |
+
|
| 55 |
+
# Use tail for context (your recent change)
|
| 56 |
+
codec_fps = float(mrt.codec.frame_rate)
|
| 57 |
+
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
| 58 |
+
loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
|
| 59 |
+
|
| 60 |
+
tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
|
| 61 |
+
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
| 62 |
+
|
| 63 |
+
# Bar-aligned token window (unchanged)
|
| 64 |
+
context_tokens = make_bar_aligned_context(
|
| 65 |
+
tokens, bpm=bpm, fps=float(mrt.codec.frame_rate),
|
| 66 |
+
ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
|
| 67 |
+
)
|
| 68 |
+
state = mrt.init_state()
|
| 69 |
+
state.context_tokens = context_tokens
|
| 70 |
+
|
| 71 |
+
# STYLE embed (optional: switch to loop_for_context if you want stronger "recent" bias)
|
| 72 |
+
loop_embed = mrt.embed_style(loop_for_context)
|
| 73 |
+
embeds, weights = [loop_embed], [float(loop_weight)]
|
| 74 |
+
if extra_styles:
|
| 75 |
+
for i, s in enumerate(extra_styles):
|
| 76 |
+
if s.strip():
|
| 77 |
+
embeds.append(mrt.embed_style(s.strip()))
|
| 78 |
+
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
|
| 79 |
+
weights.append(float(w))
|
| 80 |
+
wsum = float(sum(weights)) or 1.0
|
| 81 |
+
weights = [w / wsum for w in weights]
|
| 82 |
+
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
|
| 83 |
+
|
| 84 |
+
# --- Length math ---
|
| 85 |
+
seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
| 86 |
+
total_secs = bars * seconds_per_bar
|
| 87 |
+
drop_bars = max(0, int(intro_bars_to_drop))
|
| 88 |
+
drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
|
| 89 |
+
gen_total_secs = total_secs + drop_secs # generate extra
|
| 90 |
+
|
| 91 |
+
# Chunk scheduling to cover gen_total_secs
|
| 92 |
+
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
|
| 93 |
+
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
|
| 94 |
+
|
| 95 |
+
# Generate
|
| 96 |
+
chunks = []
|
| 97 |
+
for _ in range(steps):
|
| 98 |
+
wav, state = mrt.generate_chunk(state=state, style=combined_style)
|
| 99 |
+
chunks.append(wav)
|
| 100 |
+
|
| 101 |
+
# Stitch continuous audio
|
| 102 |
+
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
| 103 |
+
|
| 104 |
+
# Trim to generated length (bars + dropped bars)
|
| 105 |
+
stitched = hard_trim_seconds(stitched, gen_total_secs)
|
| 106 |
+
|
| 107 |
+
# 👉 Drop the intro bars
|
| 108 |
+
if drop_secs > 0:
|
| 109 |
+
n_drop = int(round(drop_secs * stitched.sample_rate))
|
| 110 |
+
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
| 111 |
+
|
| 112 |
+
# Final exact-length trim to requested bars
|
| 113 |
+
out = hard_trim_seconds(stitched, total_secs)
|
| 114 |
+
|
| 115 |
+
# Final polish AFTER drop
|
| 116 |
+
out = out.peak_normalize(0.95)
|
| 117 |
+
apply_micro_fades(out, 5)
|
| 118 |
+
|
| 119 |
+
# Loudness match to input (after drop) so bar 1 sits right
|
| 120 |
+
out, loud_stats = match_loudness_to_reference(
|
| 121 |
+
ref=loop, target=out,
|
| 122 |
+
method=loudness_mode, headroom_db=loudness_headroom_db
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
return out, loud_stats
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def generate_style_only_with_mrt(
|
| 129 |
+
mrt,
|
| 130 |
+
bpm: float,
|
| 131 |
+
bars: int = 8,
|
| 132 |
+
beats_per_bar: int = 4,
|
| 133 |
+
styles: str = "warmup",
|
| 134 |
+
style_weights: str = "",
|
| 135 |
+
intro_bars_to_drop: int = 0,
|
| 136 |
+
):
|
| 137 |
+
"""
|
| 138 |
+
Style-only, bar-aligned generation using a silent context (no input audio).
|
| 139 |
+
Returns: (au.Waveform out, dict loud_stats_or_None)
|
| 140 |
+
"""
|
| 141 |
+
# ---- Build a 10s silent context, tokenized for the model ----
|
| 142 |
+
codec_fps = float(mrt.codec.frame_rate)
|
| 143 |
+
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
|
| 144 |
+
sr = int(mrt.sample_rate)
|
| 145 |
+
|
| 146 |
+
silent = au.Waveform(np.zeros((int(round(ctx_seconds * sr)), 2), np.float32), sr)
|
| 147 |
+
tokens_full = mrt.codec.encode(silent).astype(np.int32)
|
| 148 |
+
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
|
| 149 |
+
|
| 150 |
+
state = mrt.init_state()
|
| 151 |
+
state.context_tokens = tokens
|
| 152 |
+
|
| 153 |
+
# ---- Style vector (text prompts only, normalized weights) ----
|
| 154 |
+
prompts = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()]
|
| 155 |
+
if not prompts:
|
| 156 |
+
prompts = ["warmup"]
|
| 157 |
+
sw = [float(x) for x in style_weights.split(",")] if style_weights else []
|
| 158 |
+
embeds, weights = [], []
|
| 159 |
+
for i, p in enumerate(prompts):
|
| 160 |
+
embeds.append(mrt.embed_style(p))
|
| 161 |
+
weights.append(sw[i] if i < len(sw) else 1.0)
|
| 162 |
+
wsum = float(sum(weights)) or 1.0
|
| 163 |
+
weights = [w / wsum for w in weights]
|
| 164 |
+
style_vec = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(np.float32)
|
| 165 |
+
|
| 166 |
+
# ---- Target length math ----
|
| 167 |
+
seconds_per_bar = beats_per_bar * (60.0 / bpm)
|
| 168 |
+
total_secs = bars * seconds_per_bar
|
| 169 |
+
drop_bars = max(0, int(intro_bars_to_drop))
|
| 170 |
+
drop_secs = min(drop_bars, bars) * seconds_per_bar
|
| 171 |
+
gen_total_secs = total_secs + drop_secs
|
| 172 |
+
|
| 173 |
+
# ~2.0s chunk length from model config
|
| 174 |
+
chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate)
|
| 175 |
+
|
| 176 |
+
# Generate enough chunks to cover total, plus a pad chunk for crossfade headroom
|
| 177 |
+
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1
|
| 178 |
+
|
| 179 |
+
chunks = []
|
| 180 |
+
for _ in range(steps):
|
| 181 |
+
wav, state = mrt.generate_chunk(state=state, style=style_vec)
|
| 182 |
+
chunks.append(wav)
|
| 183 |
+
|
| 184 |
+
# Stitch & trim to exact musical length
|
| 185 |
+
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
|
| 186 |
+
stitched = hard_trim_seconds(stitched, gen_total_secs)
|
| 187 |
+
|
| 188 |
+
if drop_secs > 0:
|
| 189 |
+
n_drop = int(round(drop_secs * stitched.sample_rate))
|
| 190 |
+
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
|
| 191 |
+
|
| 192 |
+
out = hard_trim_seconds(stitched, total_secs)
|
| 193 |
+
out = out.peak_normalize(0.95)
|
| 194 |
+
apply_micro_fades(out, 5)
|
| 195 |
+
|
| 196 |
+
return out, None # loudness stats not applicable (no reference)
|