Commit
·
82c8e97
1
Parent(s):
579e8a2
one more attempt at _append_model_chunk_and_spool
Browse files- jam_worker.py +115 -36
jam_worker.py
CHANGED
|
@@ -117,6 +117,9 @@ class JamWorker(threading.Thread):
|
|
| 117 |
self._spool = np.zeros((0, 2), dtype=np.float32) # (S,2) target SR
|
| 118 |
self._spool_written = 0 # absolute frames written into spool
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
# bar clock: start with offset 0; if you have a downbeat estimator, set base later
|
| 121 |
self._bar_clock = BarClock(self.params.target_sr, self.params.bpm, self.params.beats_per_bar, base_offset_samples=0)
|
| 122 |
|
|
@@ -420,48 +423,124 @@ class JamWorker(threading.Thread):
|
|
| 420 |
|
| 421 |
# ---------- core streaming helpers ----------
|
| 422 |
|
| 423 |
-
def _append_model_chunk_and_spool(self, wav: au.Waveform):
|
| 424 |
-
"""
|
| 425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 426 |
s = wav.samples.astype(np.float32, copy=False)
|
| 427 |
if s.ndim == 1:
|
| 428 |
s = s[:, None]
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
xfade_n = int(round(max(0.0, xfade_s) * sr))
|
| 432 |
-
|
| 433 |
-
if self._model_stream is None:
|
| 434 |
-
# first chunk: drop the preroll (xfade) then spool
|
| 435 |
-
new_part = s[xfade_n:] if xfade_n < s.shape[0] else s[:0]
|
| 436 |
-
self._model_stream = new_part.copy()
|
| 437 |
-
if new_part.size:
|
| 438 |
-
y = (new_part.astype(np.float32, copy=False)
|
| 439 |
-
if self._rs is None else
|
| 440 |
-
self._rs.process(new_part.astype(np.float32, copy=False), final=False))
|
| 441 |
-
self._spool = np.concatenate([self._spool, y], axis=0)
|
| 442 |
-
self._spool_written += y.shape[0]
|
| 443 |
return
|
| 444 |
|
| 445 |
-
# crossfade
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
else:
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
|
| 466 |
def _should_generate_next_chunk(self) -> bool:
|
| 467 |
# Allow running ahead relative to whichever is larger: last *consumed*
|
|
|
|
| 117 |
self._spool = np.zeros((0, 2), dtype=np.float32) # (S,2) target SR
|
| 118 |
self._spool_written = 0 # absolute frames written into spool
|
| 119 |
|
| 120 |
+
self._pending_tail_model = None # type: Optional[np.ndarray] # last tail at model SR
|
| 121 |
+
self._pending_tail_target_len = 0 # number of target-SR samples last tail contributed
|
| 122 |
+
|
| 123 |
# bar clock: start with offset 0; if you have a downbeat estimator, set base later
|
| 124 |
self._bar_clock = BarClock(self.params.target_sr, self.params.bpm, self.params.beats_per_bar, base_offset_samples=0)
|
| 125 |
|
|
|
|
| 423 |
|
| 424 |
# ---------- core streaming helpers ----------
|
| 425 |
|
| 426 |
+
def _append_model_chunk_and_spool(self, wav: au.Waveform) -> None:
|
| 427 |
+
"""
|
| 428 |
+
Conservative boundary fix:
|
| 429 |
+
- Emit body+tail immediately (target SR), unchanged from your original behavior.
|
| 430 |
+
- On *next* call, compute the mixed overlap (prev tail ⨉ cos + new head ⨉ sin),
|
| 431 |
+
resample it, and overwrite the last `_pending_tail_target_len` samples in the
|
| 432 |
+
target-SR spool with that mixed overlap. Then emit THIS chunk's body+tail and
|
| 433 |
+
remember THIS chunk's tail length at target SR for the next correction.
|
| 434 |
+
|
| 435 |
+
This keeps external timing and bar alignment identical, but removes the audible
|
| 436 |
+
fade-to-zero at chunk ends.
|
| 437 |
+
"""
|
| 438 |
+
import numpy as np
|
| 439 |
+
|
| 440 |
+
# ---- unpack model-rate samples ----
|
| 441 |
s = wav.samples.astype(np.float32, copy=False)
|
| 442 |
if s.ndim == 1:
|
| 443 |
s = s[:, None]
|
| 444 |
+
n_samps, _ = s.shape
|
| 445 |
+
if n_samps == 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 446 |
return
|
| 447 |
|
| 448 |
+
# crossfade length in model samples
|
| 449 |
+
try:
|
| 450 |
+
xfade_s = float(self.mrt.config.crossfade_length)
|
| 451 |
+
except Exception:
|
| 452 |
+
xfade_s = 0.0
|
| 453 |
+
xfade_n = int(round(max(0.0, xfade_s) * float(self._model_sr)))
|
| 454 |
+
|
| 455 |
+
# helper: resample to target SR via your streaming resampler
|
| 456 |
+
def to_target(y: np.ndarray) -> np.ndarray:
|
| 457 |
+
return y if self._rs is None else self._rs.process(y, final=False)
|
| 458 |
+
|
| 459 |
+
# ------------------------------------------
|
| 460 |
+
# (A) If we have a pending model tail, fix the last emitted tail at target SR
|
| 461 |
+
# ------------------------------------------
|
| 462 |
+
if self._pending_tail_model is not None and self._pending_tail_model.shape[0] == xfade_n and xfade_n > 0 and n_samps >= xfade_n:
|
| 463 |
+
head = s[:xfade_n, :]
|
| 464 |
+
t = np.linspace(0.0, np.pi/2.0, xfade_n, endpoint=False, dtype=np.float32)[:, None]
|
| 465 |
+
cosw = np.cos(t, dtype=np.float32)
|
| 466 |
+
sinw = np.sin(t, dtype=np.float32)
|
| 467 |
+
mixed_model = (self._pending_tail_model * cosw) + (head * sinw) # [xfade_n, C] at model SR
|
| 468 |
+
|
| 469 |
+
y_mixed = to_target(mixed_model.astype(np.float32))
|
| 470 |
+
Lcorr = int(y_mixed.shape[0]) # exact target-SR samples to write
|
| 471 |
+
|
| 472 |
+
# Overwrite the last `_pending_tail_target_len` samples of the spool with `y_mixed`.
|
| 473 |
+
# Use the *smaller* of the two lengths to be safe.
|
| 474 |
+
Lpop = min(self._pending_tail_target_len, self._spool.shape[0], Lcorr)
|
| 475 |
+
if Lpop > 0 and self._spool.size:
|
| 476 |
+
# Trim last Lpop samples
|
| 477 |
+
self._spool = self._spool[:-Lpop, :]
|
| 478 |
+
self._spool_written -= Lpop
|
| 479 |
+
# Append corrected overlap (trim/pad to Lpop to avoid drift)
|
| 480 |
+
if Lcorr != Lpop:
|
| 481 |
+
if Lcorr > Lpop:
|
| 482 |
+
y_m = y_mixed[-Lpop:, :]
|
| 483 |
+
else:
|
| 484 |
+
pad = np.zeros((Lpop - Lcorr, y_mixed.shape[1]), dtype=np.float32)
|
| 485 |
+
y_m = np.concatenate([y_mixed, pad], axis=0)
|
| 486 |
+
else:
|
| 487 |
+
y_m = y_mixed
|
| 488 |
+
self._spool = np.concatenate([self._spool, y_m], axis=0) if self._spool.size else y_m
|
| 489 |
+
self._spool_written += y_m.shape[0]
|
| 490 |
+
|
| 491 |
+
# For internal continuity, update _model_stream like before
|
| 492 |
+
if self._model_stream is None or self._model_stream.shape[0] < xfade_n:
|
| 493 |
+
self._model_stream = s[xfade_n:].copy()
|
| 494 |
+
else:
|
| 495 |
+
self._model_stream = np.concatenate([self._model_stream[:-xfade_n], mixed_model, s[xfade_n:]], axis=0)
|
| 496 |
else:
|
| 497 |
+
# First-ever call or too-short to mix: maintain _model_stream minimally
|
| 498 |
+
if xfade_n > 0 and n_samps > xfade_n:
|
| 499 |
+
self._model_stream = s[xfade_n:].copy() if self._model_stream is None else np.concatenate([self._model_stream, s[xfade_n:]], axis=0)
|
| 500 |
+
else:
|
| 501 |
+
self._model_stream = s.copy() if self._model_stream is None else np.concatenate([self._model_stream, s], axis=0)
|
| 502 |
+
|
| 503 |
+
# ------------------------------------------
|
| 504 |
+
# (B) Emit THIS chunk's body and tail (same external behavior)
|
| 505 |
+
# ------------------------------------------
|
| 506 |
+
if xfade_n > 0 and n_samps >= (2 * xfade_n):
|
| 507 |
+
body = s[xfade_n:-xfade_n, :]
|
| 508 |
+
if body.size:
|
| 509 |
+
y_body = to_target(body.astype(np.float32))
|
| 510 |
+
if y_body.size:
|
| 511 |
+
self._spool = np.concatenate([self._spool, y_body], axis=0) if self._spool.size else y_body
|
| 512 |
+
self._spool_written += y_body.shape[0]
|
| 513 |
+
else:
|
| 514 |
+
# If chunk too short for head+tail split, treat all (minus preroll) as body
|
| 515 |
+
if xfade_n > 0 and n_samps > xfade_n:
|
| 516 |
+
body = s[xfade_n:, :]
|
| 517 |
+
y_body = to_target(body.astype(np.float32))
|
| 518 |
+
if y_body.size:
|
| 519 |
+
self._spool = np.concatenate([self._spool, y_body], axis=0) if self._spool.size else y_body
|
| 520 |
+
self._spool_written += y_body.shape[0]
|
| 521 |
+
# No tail to remember this round
|
| 522 |
+
self._pending_tail_model = None
|
| 523 |
+
self._pending_tail_target_len = 0
|
| 524 |
+
return
|
| 525 |
+
|
| 526 |
+
# Tail (always remember how many TARGET samples we append)
|
| 527 |
+
if xfade_n > 0 and n_samps >= xfade_n:
|
| 528 |
+
tail = s[-xfade_n:, :]
|
| 529 |
+
y_tail = to_target(tail.astype(np.float32))
|
| 530 |
+
Ltail = int(y_tail.shape[0])
|
| 531 |
+
if Ltail:
|
| 532 |
+
self._spool = np.concatenate([self._spool, y_tail], axis=0) if self._spool.size else y_tail
|
| 533 |
+
self._spool_written += Ltail
|
| 534 |
+
self._pending_tail_model = tail.copy()
|
| 535 |
+
self._pending_tail_target_len = Ltail
|
| 536 |
+
else:
|
| 537 |
+
# Nothing appended (resampler returning nothing yet) — keep model tail but mark zero target len
|
| 538 |
+
self._pending_tail_model = tail.copy()
|
| 539 |
+
self._pending_tail_target_len = 0
|
| 540 |
+
else:
|
| 541 |
+
self._pending_tail_model = None
|
| 542 |
+
self._pending_tail_target_len = 0
|
| 543 |
+
|
| 544 |
|
| 545 |
def _should_generate_next_chunk(self) -> bool:
|
| 546 |
# Allow running ahead relative to whichever is larger: last *consumed*
|