Spaces:
Sleeping
Sleeping
| import os | |
| # ---- Space mode gating (place above any JAX import!) ---- | |
| SPACE_MODE = os.getenv("SPACE_MODE") | |
| if SPACE_MODE is None: | |
| try: | |
| import jax | |
| SPACE_MODE = "serve" if any(getattr(d, "platform", "") in ("gpu","cuda","rocm") for d in jax.devices()) else "template" | |
| except Exception: | |
| SPACE_MODE = "template" | |
| if SPACE_MODE != "serve": | |
| # In template mode, force JAX to CPU so it won't try to load CUDA plugins | |
| os.environ.setdefault("JAX_PLATFORMS", "cpu") | |
| else: | |
| # Only set GPU-friendly XLA flags when we actually intend to serve on GPU | |
| os.environ.setdefault( | |
| "XLA_FLAGS", | |
| " ".join([ | |
| "--xla_gpu_enable_triton_gemm=true", | |
| "--xla_gpu_enable_latency_hiding_scheduler=true", | |
| "--xla_gpu_autotune_level=2", | |
| ]) | |
| ) | |
| # Optional: persist JAX compile cache across restarts (reduces warmup time) | |
| os.environ.setdefault("JAX_CACHE_DIR", "/home/appuser/.cache/jax") | |
| import jax | |
| # ✅ Valid choices include: "default", "high", "highest", "tensorfloat32", "float32", etc. | |
| # TF32 is the sweet spot on Ampere/Ada GPUs for ~1.1–1.3× matmul speedups. | |
| try: | |
| jax.config.update("jax_default_matmul_precision", "tensorfloat32") | |
| except Exception: | |
| jax.config.update("jax_default_matmul_precision", "high") # older alias | |
| # Initialize the on-disk compilation cache (best-effort) | |
| try: | |
| from jax.experimental.compilation_cache import compilation_cache as cc | |
| cc.initialize_cache(os.environ["JAX_CACHE_DIR"]) | |
| except Exception: | |
| pass | |
| # -------------------------------------------------------------------- | |
| from magenta_rt import system, audio as au | |
| import numpy as np | |
| from fastapi import FastAPI, UploadFile, File, Form, Body, HTTPException, Response, Request, WebSocket, WebSocketDisconnect, Query | |
| from fastapi.responses import JSONResponse | |
| import tempfile, io, base64, math, threading | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from contextlib import contextmanager | |
| import soundfile as sf | |
| from math import gcd | |
| from scipy.signal import resample_poly | |
| from utils import ( | |
| match_loudness_to_reference, stitch_generated, hard_trim_seconds, | |
| apply_micro_fades, make_bar_aligned_context, take_bar_aligned_tail, | |
| resample_and_snap, wav_bytes_base64 | |
| ) | |
| from jam_worker import JamWorker, JamParams, JamChunk | |
| from one_shot_generation import generate_loop_continuation_with_mrt, generate_style_only_with_mrt | |
| import uuid, threading | |
| import logging | |
| import gradio as gr | |
| from typing import Optional, Union, Literal | |
| import json, asyncio, base64 | |
| import time | |
| from starlette.websockets import WebSocketState | |
| try: | |
| from uvicorn.protocols.utils import ClientDisconnected # uvicorn >= 0.20 | |
| except Exception: | |
| class ClientDisconnected(Exception): # fallback | |
| pass | |
| import re, tarfile | |
| from pathlib import Path | |
| from huggingface_hub import snapshot_download, HfApi | |
| from pydantic import BaseModel | |
| from model_management import CheckpointManager, AssetManager, ModelSelector, ModelSelect | |
| def _gpu_probe() -> dict: | |
| """ | |
| Returns: | |
| { | |
| "ok": bool, | |
| "backend": str | None, # "gpu" | "cpu" | "tpu" | None | |
| "has_gpu": bool, | |
| "devices": list[str], # e.g. ["gpu:0", "gpu:1"] | |
| "error": str | None, | |
| } | |
| """ | |
| try: | |
| import jax | |
| try: | |
| backend = jax.default_backend() # "gpu", "cpu", "tpu" | |
| except Exception: | |
| from jax.lib import xla_bridge | |
| backend = getattr(xla_bridge.get_backend(), "platform", None) | |
| try: | |
| devices = jax.devices() | |
| has_gpu = any(getattr(d, "platform", "") in ("gpu", "cuda", "rocm") for d in devices) | |
| dev_list = [f"{getattr(d, 'platform', '?')}:{getattr(d, 'id', '?')}" for d in devices] | |
| return {"ok": True, "backend": backend, "has_gpu": has_gpu, "devices": dev_list, "error": None} | |
| except Exception as e: | |
| return {"ok": False, "backend": backend, "has_gpu": False, "devices": [], "error": f"jax.devices failed: {e}"} | |
| except Exception as e: | |
| return {"ok": False, "backend": None, "has_gpu": False, "devices": [], "error": f"jax import failed: {e}"} | |
| # ---- Finetune assets (mean & centroids) -------------------------------------- | |
| # _FINETUNE_REPO_DEFAULT = os.getenv("MRT_ASSETS_REPO", "thepatch/magenta-ft") | |
| _ASSETS_REPO_ID: str | None = None | |
| _MEAN_EMBED: np.ndarray | None = None # shape (D,) dtype float32 | |
| _CENTROIDS: np.ndarray | None = None # shape (K, D) dtype float32 | |
| # _STEP_RE = re.compile(r"(?:^|/)checkpoint_(\d+)(?:/|\.tar\.gz|\.tgz)?$") | |
| # Create instances (these don't modify globals) | |
| asset_manager = AssetManager() | |
| model_selector = ModelSelector(CheckpointManager(), asset_manager) | |
| # Sync asset manager with existing globals | |
| # def _sync_asset_manager(): | |
| # asset_manager.mean_embed = _MEAN_EMBED | |
| # asset_manager.centroids = _CENTROIDS | |
| # asset_manager.assets_repo_id = _ASSETS_REPO_ID | |
| def _any_jam_running() -> bool: | |
| with jam_lock: | |
| return any(w.is_alive() for w in jam_registry.values()) | |
| def _stop_all_jams(timeout: float = 5.0): | |
| with jam_lock: | |
| for sid, w in list(jam_registry.items()): | |
| if w.is_alive(): | |
| w.stop() | |
| w.join(timeout=timeout) | |
| jam_registry.pop(sid, None) | |
| async def send_json_safe(ws: WebSocket, obj) -> bool: | |
| """Try to send. Returns False if the socket is (or becomes) closed.""" | |
| if ws.client_state == WebSocketState.DISCONNECTED or ws.application_state == WebSocketState.DISCONNECTED: | |
| return False | |
| try: | |
| await ws.send_text(json.dumps(obj)) | |
| return True | |
| except (WebSocketDisconnect, ClientDisconnected, RuntimeError): | |
| return False | |
| except Exception: | |
| return False | |
| # --- Patch T5X mesh helpers for GPUs on JAX >= 0.7 (coords present, no core_on_chip) --- | |
| def _patch_t5x_for_gpu_coords(): | |
| try: | |
| import jax | |
| from t5x import partitioning as _t5x_part | |
| old_bounds = getattr(_t5x_part, "bounds_from_last_device", None) | |
| old_getcoords = getattr(_t5x_part, "get_coords", None) | |
| def _bounds_from_last_device_gpu_safe(last_device): | |
| # TPU: coords + core_on_chip | |
| core = getattr(last_device, "core_on_chip", None) | |
| coords = getattr(last_device, "coords", None) | |
| if coords is not None and core is not None: | |
| x, y, z = coords | |
| return x + 1, y + 1, z + 1, core + 1 | |
| # Non-TPU (or GPU lacking core_on_chip): hosts x local_devices | |
| return jax.host_count(), jax.local_device_count() | |
| def _get_coords_gpu_safe(device): | |
| core = getattr(device, "core_on_chip", None) | |
| coords = getattr(device, "coords", None) | |
| if coords is not None and core is not None: | |
| return (*coords, core) | |
| # Fallback that works on CPU/GPU | |
| return (device.process_index, device.id % jax.local_device_count()) | |
| _t5x_part.bounds_from_last_device = _bounds_from_last_device_gpu_safe | |
| _t5x_part.get_coords = _get_coords_gpu_safe | |
| import logging; logging.info("Patched t5x.partitioning for GPU coords without core_on_chip.") | |
| except Exception as e: | |
| import logging; logging.exception("t5x GPU-coords patch failed: %s", e) | |
| # Call the patch immediately at import time (before MagentaRT init) | |
| _patch_t5x_for_gpu_coords() | |
| jam_registry: dict[str, JamWorker] = {} | |
| jam_lock = threading.Lock() | |
| def mrt_overrides(mrt, **kwargs): | |
| """Temporarily set attributes on MRT if they exist; restore after.""" | |
| old = {} | |
| try: | |
| for k, v in kwargs.items(): | |
| if hasattr(mrt, k): | |
| old[k] = getattr(mrt, k) | |
| setattr(mrt, k, v) | |
| yield | |
| finally: | |
| for k, v in old.items(): | |
| setattr(mrt, k, v) | |
| # loudness utils | |
| try: | |
| import pyloudnorm as pyln | |
| _HAS_LOUDNORM = True | |
| except Exception: | |
| _HAS_LOUDNORM = False | |
| # def _combine_styles(mrt, styles_str: str = "", weights_str: str = ""): | |
| # extra = [s.strip() for s in (styles_str or "").split(",") if s.strip()] | |
| # if not extra: | |
| # return mrt.embed_style("warmup") | |
| # sw = [float(x) for x in (weights_str or "").split(",") if x.strip()] | |
| # embeds, weights = [], [] | |
| # for i, s in enumerate(extra): | |
| # embeds.append(mrt.embed_style(s)) | |
| # weights.append(sw[i] if i < len(sw) else 1.0) | |
| # wsum = sum(weights) or 1.0 | |
| # weights = [w/wsum for w in weights] | |
| # import numpy as np | |
| # return np.sum([w*e for w, e in zip(weights, embeds)], axis=0).astype(np.float32) | |
| def build_style_vector( | |
| mrt, | |
| *, | |
| text_styles: list[str] | None = None, | |
| text_weights: list[float] | None = None, | |
| loop_embed: np.ndarray | None = None, | |
| loop_weight: float | None = None, | |
| mean_weight: float | None = None, | |
| centroid_weights: list[float] | None = None, | |
| ) -> np.ndarray: | |
| """ | |
| Returns a single style embedding combining: | |
| - loop embedding (optional) | |
| - one or more text style embeddings (optional) | |
| - mean finetune embedding (optional) | |
| - centroid embeddings (optional) | |
| All weights are normalized so they sum to 1 if > 0. | |
| """ | |
| comps: list[np.ndarray] = [] | |
| weights: list[float] = [] | |
| # loop component | |
| if loop_embed is not None and (loop_weight or 0) > 0: | |
| comps.append(loop_embed.astype(np.float32, copy=False)) | |
| weights.append(float(loop_weight)) | |
| # text components | |
| if text_styles: | |
| for i, s in enumerate(text_styles): | |
| s = s.strip() | |
| if not s: | |
| continue | |
| w = 1.0 | |
| if text_weights and i < len(text_weights): | |
| try: w = float(text_weights[i]) | |
| except: w = 1.0 | |
| if w <= 0: | |
| continue | |
| e = mrt.embed_style(s) | |
| comps.append(e.astype(np.float32, copy=False)) | |
| weights.append(w) | |
| # mean finetune | |
| if mean_weight and (_MEAN_EMBED is not None) and mean_weight > 0: | |
| comps.append(_MEAN_EMBED) | |
| weights.append(float(mean_weight)) | |
| # centroid components | |
| if centroid_weights and _CENTROIDS is not None: | |
| K = _CENTROIDS.shape[0] | |
| for k, w in enumerate(centroid_weights[:K]): | |
| try: w = float(w) | |
| except: w = 0.0 | |
| if w <= 0: | |
| continue | |
| comps.append(_CENTROIDS[k]) | |
| weights.append(w) | |
| if not comps: | |
| # fallback: neutral style if nothing provided | |
| return mrt.embed_style("") | |
| wsum = sum(weights) | |
| if wsum <= 0: | |
| return mrt.embed_style("") | |
| weights = [w/wsum for w in weights] | |
| # weighted sum | |
| out = np.zeros_like(comps[0], dtype=np.float32) | |
| for w, e in zip(weights, comps): | |
| out += w * e.astype(np.float32, copy=False) | |
| return out | |
| # ---------------------------- | |
| # FastAPI app with lazy, thread-safe model init | |
| # ---------------------------- | |
| app = FastAPI() | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], # or lock to your domain(s) | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| _MRT = None | |
| _MRT_LOCK = threading.Lock() | |
| def get_mrt(): | |
| global _MRT | |
| if _MRT is None: | |
| with _MRT_LOCK: | |
| if _MRT is None: | |
| from model_management import CheckpointManager | |
| ckpt_dir = CheckpointManager.resolve_checkpoint_dir() # ← Updated call | |
| _MRT = system.MagentaRT( | |
| tag=os.getenv("MRT_SIZE", "large"), | |
| guidance_weight=5.0, | |
| device="gpu", | |
| checkpoint_dir=ckpt_dir, | |
| lazy=False, | |
| ) | |
| return _MRT | |
| _WARMED = False | |
| _WARMUP_LOCK = threading.Lock() | |
| def _mrt_warmup(): | |
| """ | |
| Build a minimal, bar-aligned silent context and run one 2s generate_chunk | |
| to trigger XLA JIT & autotune so first real request is fast. | |
| """ | |
| global _WARMED | |
| with _WARMUP_LOCK: | |
| if _WARMED: | |
| return | |
| try: | |
| mrt = get_mrt() | |
| # --- derive timing from model config --- | |
| codec_fps = float(mrt.codec.frame_rate) | |
| ctx_seconds = float(mrt.config.context_length_frames) / codec_fps | |
| sr = int(mrt.sample_rate) | |
| # We'll align to 120 BPM, 4/4, and generate one ~2s chunk | |
| bpm = 120.0 | |
| beats_per_bar = 4 | |
| # --- build a silent, stereo context of ctx_seconds --- | |
| samples = int(max(1, round(ctx_seconds * sr))) | |
| silent = np.zeros((samples, 2), dtype=np.float32) | |
| with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp: | |
| sf.write(tmp.name, silent, sr, subtype="PCM_16") | |
| tmp_path = tmp.name | |
| try: | |
| # Load as Waveform and take a tail of exactly ctx_seconds | |
| loop = au.Waveform.from_file(tmp_path).resample(sr).as_stereo() | |
| seconds_per_bar = beats_per_bar * (60.0 / bpm) | |
| ctx_tail = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds) | |
| # Tokens for context window | |
| tokens_full = mrt.codec.encode(ctx_tail).astype(np.int32) | |
| tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth] | |
| context_tokens = make_bar_aligned_context( | |
| tokens, | |
| bpm=bpm, | |
| fps=float(mrt.codec.frame_rate), | |
| ctx_frames=mrt.config.context_length_frames, | |
| beats_per_bar=beats_per_bar, | |
| ) | |
| # Init state and a basic style vector (text token is fine) | |
| state = mrt.init_state() | |
| state.context_tokens = context_tokens | |
| style_vec = mrt.embed_style("warmup") | |
| # --- one throwaway chunk (~2s) --- | |
| _wav, _state = mrt.generate_chunk(state=state, style=style_vec) | |
| logging.info("MagentaRT warmup complete.") | |
| finally: | |
| try: | |
| os.unlink(tmp_path) | |
| except Exception: | |
| pass | |
| _WARMED = True | |
| except Exception as e: | |
| # Never crash on warmup errors; log and continue serving | |
| logging.exception("MagentaRT warmup failed (continuing without warmup): %s", e) | |
| # ---------------------------- | |
| # startup and model selection | |
| # ---------------------------- | |
| # Kick it off in the background on server start | |
| def _kickoff_warmup(): | |
| if os.getenv("MRT_WARMUP", "1") != "0": | |
| threading.Thread(target=_mrt_warmup, name="mrt-warmup", daemon=True).start() | |
| def model_status(): | |
| mrt = get_mrt() | |
| return { | |
| "tag": getattr(mrt, "_tag", "unknown"), | |
| "using_checkpoint_dir": True, | |
| "codec_frame_rate": float(mrt.codec.frame_rate), | |
| "decoder_rvq_depth": int(mrt.config.decoder_codec_rvq_depth), | |
| "context_seconds": float(mrt.config.context_length), | |
| "chunk_seconds": float(mrt.config.chunk_length), | |
| "crossfade_seconds": float(mrt.config.crossfade_length), | |
| "selected_step": os.getenv("MRT_CKPT_STEP"), | |
| "repo": os.getenv("MRT_CKPT_REPO"), | |
| } | |
| def model_swap(step: int = Form(...)): | |
| # stop any active jam if you want to be strict (not shown) | |
| os.environ["MRT_CKPT_STEP"] = str(step) | |
| global _MRT | |
| with _MRT_LOCK: | |
| _MRT = None # force re-create on next get_mrt() | |
| # optionally pre-warm here by calling get_mrt() | |
| return {"reloaded": True, "step": step} | |
| def model_assets_load(repo_id: str = Form(None)): | |
| global _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID | |
| ok, msg = asset_manager.load_finetune_assets_from_hf(repo_id, get_mrt()) | |
| # Sync globals after loading | |
| _MEAN_EMBED = asset_manager.mean_embed | |
| _CENTROIDS = asset_manager.centroids | |
| _ASSETS_REPO_ID = asset_manager.assets_repo_id | |
| return {"ok": ok, "message": msg, "repo_id": _ASSETS_REPO_ID, | |
| "mean": _MEAN_EMBED is not None, | |
| "centroids": None if _CENTROIDS is None else int(_CENTROIDS.shape[0])} | |
| def model_assets_status(): | |
| d = None | |
| try: | |
| d = int(get_mrt().style_model.config.embedding_dim) | |
| except Exception: | |
| pass | |
| return { | |
| "repo_id": _ASSETS_REPO_ID, | |
| "mean_loaded": _MEAN_EMBED is not None, | |
| "centroids_loaded": False if _CENTROIDS is None else True, | |
| "centroid_count": None if _CENTROIDS is None else int(_CENTROIDS.shape[0]), | |
| "embedding_dim": d, | |
| } | |
| def model_config(): | |
| """ | |
| Lightweight config snapshot: | |
| - never calls get_mrt() (no model build / no downloads) | |
| - never calls snapshot_download() | |
| - reports whether a model instance is currently loaded in memory | |
| - best-effort local checkpoint presence (no network) | |
| """ | |
| # Read-only snapshot of in-memory model presence | |
| with _MRT_LOCK: | |
| loaded = (_MRT is not None) | |
| size = os.getenv("MRT_SIZE", "large") | |
| repo = os.getenv("MRT_CKPT_REPO") | |
| rev = os.getenv("MRT_CKPT_REV", "main") | |
| step = os.getenv("MRT_CKPT_STEP") | |
| assets = os.getenv("MRT_ASSETS_REPO") | |
| # Use CheckpointManager for local cache probe (no network) | |
| local_ckpt = None | |
| if step: | |
| try: | |
| from pathlib import Path | |
| import re | |
| step_escaped = re.escape(str(step)) | |
| candidates = [] | |
| for root in ("/home/appuser/.cache/mrt_ckpt/extracted", | |
| "/home/appuser/.cache/mrt_ckpt/repo"): | |
| p = Path(root) | |
| if not p.exists(): | |
| continue | |
| # Look for exact "checkpoint_<step>" directories anywhere under these roots | |
| for d in p.rglob(f"checkpoint_{step}"): | |
| if d.is_dir(): | |
| candidates.append(str(d)) | |
| local_ckpt = candidates[0] if candidates else None | |
| except Exception: | |
| local_ckpt = None | |
| return { | |
| "size": size, | |
| "repo": repo, | |
| "revision": rev, | |
| "selected_step": step, | |
| "assets_repo": assets, | |
| # in-memory + local cache hints (no network, no model build) | |
| "loaded": loaded, | |
| "active_jam": _any_jam_running(), | |
| "local_checkpoint_dir": local_ckpt, # None if not found locally | |
| # steering assets currently resident in memory | |
| "mean_loaded": (_MEAN_EMBED is not None), | |
| "centroids_loaded": (_CENTROIDS is not None), | |
| "centroid_count": (None if _CENTROIDS is None else int(_CENTROIDS.shape[0])), | |
| "warmup_done": bool(_WARMED), | |
| } | |
| def model_checkpoints(repo_id: str, revision: str = "main"): | |
| steps = CheckpointManager.list_ckpt_steps(repo_id, revision) | |
| return {"repo": repo_id, "revision": revision, "steps": steps, "latest": (steps[-1] if steps else None)} | |
| def model_select(req: ModelSelect): | |
| """ | |
| Swap model/checkpoint/assets. If req.prewarm is True, run the full bar-aligned warmup | |
| (_mrt_warmup) synchronously so we only report warmed once the new model is actually ready. | |
| """ | |
| global _MRT, _MEAN_EMBED, _CENTROIDS, _ASSETS_REPO_ID, _WARMED | |
| # 1) Validate the request (no side-effects) | |
| success, validation_result = model_selector.validate_selection(req) | |
| if not success: | |
| if "error" in validation_result: | |
| raise HTTPException(status_code=400, detail=validation_result["error"]) | |
| return {"ok": False, **validation_result} | |
| # Augment response surface | |
| validation_result["active_jam"] = _any_jam_running() | |
| # Dry-run path | |
| if req.dry_run: | |
| return {"ok": True, "dry_run": True, **validation_result} | |
| # 2) Handle jam policy | |
| if _any_jam_running(): | |
| if req.stop_active: | |
| _stop_all_jams() | |
| else: | |
| raise HTTPException(status_code=409, detail="A jam is running; retry with stop_active=true") | |
| # 3) Compute environment changes (no mutation yet) | |
| env_changes = model_selector.prepare_env_changes(req, validation_result) | |
| # Keep current env for rollback | |
| old_env = { | |
| "MRT_SIZE": os.getenv("MRT_SIZE"), | |
| "MRT_CKPT_REPO": os.getenv("MRT_CKPT_REPO"), | |
| "MRT_CKPT_REV": os.getenv("MRT_CKPT_REV"), | |
| "MRT_CKPT_STEP": os.getenv("MRT_CKPT_STEP"), | |
| "MRT_ASSETS_REPO": os.getenv("MRT_ASSETS_REPO"), | |
| } | |
| try: | |
| # 4) Apply env atomically | |
| for key, value in env_changes.items(): | |
| if value is None: | |
| os.environ.pop(key, None) | |
| else: | |
| os.environ[key] = str(value) | |
| # 5) Force rebuild of the model and reset warmup state | |
| with _MRT_LOCK: | |
| _MRT = None | |
| with _WARMUP_LOCK: | |
| _WARMED = False # ← critical: don't leak previous model's warmed state | |
| # 6) Load finetune assets if requested (mean/centroids) | |
| if req.sync_assets and validation_result.get("assets_repo"): | |
| ok, msg = asset_manager.load_finetune_assets_from_hf( | |
| validation_result["assets_repo"], | |
| None # don't implicitly instantiate model here; we'll do it below | |
| ) | |
| if ok: | |
| _MEAN_EMBED = asset_manager.mean_embed | |
| _CENTROIDS = asset_manager.centroids | |
| _ASSETS_REPO_ID = asset_manager.assets_repo_id | |
| else: | |
| logging.warning("Asset sync skipped/failed: %s", msg) | |
| # 7) Prewarm behavior: | |
| # - If prewarm=True, run the *real* bar-aligned warmup synchronously. | |
| # - This will instantiate the new MRT and set _WARMED=True on success. | |
| if req.prewarm: | |
| _mrt_warmup() # builds MRT internally via get_mrt(), runs generate_chunk, sets _WARMED | |
| # Optional: if you want to always ensure MRT exists (even without prewarm), uncomment: | |
| # else: | |
| # _ = get_mrt() | |
| return { | |
| "ok": True, | |
| **validation_result, | |
| "warmup_done": bool(_WARMED), | |
| } | |
| except Exception as e: | |
| # 8) Roll back env on failure | |
| for k, v in old_env.items(): | |
| if v is None: | |
| os.environ.pop(k, None) | |
| else: | |
| os.environ[k] = v | |
| # Also reset model pointer & warmed flag to a safe state | |
| with _MRT_LOCK: | |
| _MRT = None | |
| with _WARMUP_LOCK: | |
| _WARMED = False | |
| logging.exception("Model select failed: %s", e) | |
| raise HTTPException(status_code=500, detail=f"Model select failed: {e}") | |
| # ---------------------------- | |
| # one-shot generation | |
| # ---------------------------- | |
| def generate( | |
| loop_audio: UploadFile = File(...), | |
| bpm: float = Form(...), | |
| bars: int = Form(8), | |
| beats_per_bar: int = Form(4), | |
| styles: str = Form("acid house"), | |
| style_weights: str = Form(""), | |
| loop_weight: float = Form(1.0), | |
| loudness_mode: str = Form("auto"), | |
| loudness_headroom_db: float = Form(1.0), | |
| guidance_weight: float = Form(5.0), | |
| temperature: float = Form(1.1), | |
| topk: int = Form(40), | |
| target_sample_rate: int | None = Form(None), | |
| intro_bars_to_drop: int = Form(0), # <— NEW | |
| ): | |
| # Read file | |
| data = loop_audio.file.read() | |
| if not data: | |
| return {"error": "Empty file"} | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(data) | |
| tmp_path = tmp.name | |
| # Parse styles + weights | |
| extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()] | |
| weights = [float(x) for x in style_weights.split(",")] if style_weights else None | |
| mrt = get_mrt() # warm once, in this worker thread | |
| # Temporarily override MRT inference knobs for this request | |
| with mrt_overrides(mrt, | |
| guidance_weight=guidance_weight, | |
| temperature=temperature, | |
| topk=topk): | |
| wav, loud_stats = generate_loop_continuation_with_mrt( | |
| mrt, | |
| input_wav_path=tmp_path, | |
| bpm=bpm, | |
| extra_styles=extra_styles, | |
| style_weights=weights, | |
| bars=bars, | |
| beats_per_bar=beats_per_bar, | |
| loop_weight=loop_weight, | |
| loudness_mode=loudness_mode, | |
| loudness_headroom_db=loudness_headroom_db, | |
| intro_bars_to_drop=intro_bars_to_drop, # <— pass through | |
| ) | |
| # 1) Figure out the desired SR | |
| inp_info = sf.info(tmp_path) | |
| input_sr = int(inp_info.samplerate) | |
| target_sr = int(target_sample_rate or input_sr) | |
| # 2) Convert to target SR + snap to exact bars | |
| cur_sr = int(mrt.sample_rate) | |
| x = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None] | |
| seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar) | |
| expected_secs = float(bars) * seconds_per_bar | |
| x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=expected_secs) | |
| # 3) Encode WAV once (no extra write) | |
| audio_b64, total_samples, channels = wav_bytes_base64(x, target_sr) | |
| loop_duration_seconds = total_samples / float(target_sr) | |
| # 4) Metadata | |
| metadata = { | |
| "bpm": int(round(bpm)), | |
| "bars": int(bars), | |
| "beats_per_bar": int(beats_per_bar), | |
| "styles": extra_styles, | |
| "style_weights": weights, | |
| "loop_weight": loop_weight, | |
| "loudness": loud_stats, | |
| "sample_rate": int(target_sr), | |
| "channels": int(channels), | |
| "crossfade_seconds": mrt.config.crossfade_length, | |
| "total_samples": int(total_samples), | |
| "seconds_per_bar": seconds_per_bar, | |
| "loop_duration_seconds": loop_duration_seconds, | |
| "guidance_weight": guidance_weight, | |
| "temperature": temperature, | |
| "topk": topk, | |
| } | |
| return {"audio_base64": audio_b64, "metadata": metadata} | |
| # new endpoint to return a bar-aligned chunk without the need for combined audio | |
| def generate_style( | |
| bpm: float = Form(...), | |
| bars: int = Form(8), | |
| beats_per_bar: int = Form(4), | |
| styles: str = Form("warmup"), | |
| style_weights: str = Form(""), | |
| guidance_weight: float = Form(1.1), | |
| temperature: float = Form(1.1), | |
| topk: int = Form(40), | |
| target_sample_rate: int | None = Form(None), | |
| intro_bars_to_drop: int = Form(0), | |
| ): | |
| """ | |
| Style-only, bar-aligned generation (no input audio). | |
| Seeds with 10s of silent context; outputs exactly `bars` at the requested BPM. | |
| """ | |
| mrt = get_mrt() | |
| # Override sampling knobs just for this request | |
| with mrt_overrides(mrt, | |
| guidance_weight=guidance_weight, | |
| temperature=temperature, | |
| topk=topk): | |
| wav, _ = generate_style_only_with_mrt( | |
| mrt, | |
| bpm=bpm, | |
| bars=bars, | |
| beats_per_bar=beats_per_bar, | |
| styles=styles, | |
| style_weights=style_weights, | |
| intro_bars_to_drop=intro_bars_to_drop, | |
| ) | |
| # Determine target SR (defaults to model SR = 48k) | |
| cur_sr = int(mrt.sample_rate) | |
| target_sr = int(target_sample_rate or cur_sr) | |
| x = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None] | |
| seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar) | |
| expected_secs = float(bars) * seconds_per_bar | |
| # Snap exactly to musical length at the requested sample rate | |
| x = resample_and_snap(x, cur_sr=cur_sr, target_sr=target_sr, seconds=expected_secs) | |
| audio_b64, total_samples, channels = wav_bytes_base64(x, target_sr) | |
| metadata = { | |
| "bpm": int(round(bpm)), | |
| "bars": int(bars), | |
| "beats_per_bar": int(beats_per_bar), | |
| "styles": [s.strip() for s in (styles.split(",") if styles else []) if s.strip()], | |
| "style_weights": [float(y) for y in style_weights.split(",")] if style_weights else None, | |
| "sample_rate": int(target_sr), | |
| "channels": int(channels), | |
| "crossfade_seconds": mrt.config.crossfade_length, | |
| "seconds_per_bar": seconds_per_bar, | |
| "loop_duration_seconds": total_samples / float(target_sr), | |
| "guidance_weight": guidance_weight, | |
| "temperature": temperature, | |
| "topk": topk, | |
| } | |
| return {"audio_base64": audio_b64, "metadata": metadata} | |
| # ---------------------------- | |
| # the 'keep jamming' button | |
| # ---------------------------- | |
| def jam_start( | |
| loop_audio: UploadFile = File(...), | |
| bpm: float = Form(...), | |
| bars_per_chunk: int = Form(4), | |
| beats_per_bar: int = Form(4), | |
| styles: str = Form(""), | |
| style_weights: str = Form(""), | |
| loop_weight: float = Form(1.0), | |
| # NEW steering params: | |
| mean: float = Form(0.0), | |
| centroid_weights: str = Form(""), | |
| loudness_mode: str = Form("auto"), | |
| loudness_headroom_db: float = Form(1.0), | |
| guidance_weight: float = Form(1.1), | |
| temperature: float = Form(1.1), | |
| topk: int = Form(40), | |
| target_sample_rate: int | None = Form(None), | |
| ): | |
| asset_manager.ensure_assets_loaded(get_mrt()) | |
| # enforce single active jam per GPU | |
| with jam_lock: | |
| for sid, w in list(jam_registry.items()): | |
| if w.is_alive(): | |
| raise HTTPException(status_code=429, detail="A jam is already running. Try again later.") | |
| # read input + prep context/style (reuse your existing code) | |
| data = loop_audio.file.read() | |
| if not data: raise HTTPException(status_code=400, detail="Empty file") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(data); tmp_path = tmp.name | |
| mrt = get_mrt() | |
| loop = au.Waveform.from_file(tmp_path).resample(mrt.sample_rate).as_stereo() | |
| # build tail context + style vec (tail-biased) | |
| codec_fps = float(mrt.codec.frame_rate) | |
| ctx_seconds = float(mrt.config.context_length_frames) / codec_fps | |
| loop_tail = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds) | |
| # Parse client style fields (preserves your semantics) | |
| text_list = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()] | |
| try: | |
| tw = [float(x) for x in style_weights.split(",")] if style_weights else [] | |
| except ValueError: | |
| tw = [] | |
| try: | |
| cw = [float(x) for x in centroid_weights.split(",")] if centroid_weights else [] | |
| except ValueError: | |
| cw = [] | |
| # Compute loop-tail embed once (same as before) | |
| loop_tail_embed = mrt.embed_style(loop_tail) | |
| # Build final style vector: | |
| # - identical to your previous mix when mean==0 and cw is empty | |
| # - otherwise includes mean and centroid components (weights auto-normalized) | |
| style_vec = build_style_vector( | |
| mrt, | |
| text_styles=text_list, | |
| text_weights=tw, | |
| loop_embed=loop_tail_embed, | |
| loop_weight=float(loop_weight), | |
| mean_weight=float(mean), | |
| centroid_weights=cw, | |
| ).astype(np.float32, copy=False) | |
| # target SR (default input SR) | |
| inp_info = sf.info(tmp_path) | |
| input_sr = int(inp_info.samplerate) | |
| target_sr = int(target_sample_rate or input_sr) | |
| params = JamParams( | |
| bpm=bpm, | |
| beats_per_bar=beats_per_bar, | |
| bars_per_chunk=bars_per_chunk, | |
| target_sr=target_sr, | |
| loudness_mode=loudness_mode, | |
| headroom_db=loudness_headroom_db, | |
| style_vec=style_vec, | |
| ref_loop=loop_tail, # For loudness matching | |
| combined_loop=loop, # NEW: Full loop for context setup | |
| guidance_weight=guidance_weight, | |
| temperature=temperature, | |
| topk=topk | |
| ) | |
| worker = JamWorker(mrt, params) | |
| sid = str(uuid.uuid4()) | |
| with jam_lock: | |
| jam_registry[sid] = worker | |
| worker.start() | |
| return {"session_id": sid} | |
| def jam_next(session_id: str): | |
| """ | |
| Get the next sequential chunk in the jam session. | |
| This ensures chunks are delivered in order without gaps. | |
| """ | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None or not worker.is_alive(): | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| # Get the next sequential chunk (this blocks until ready) | |
| chunk = worker.get_next_chunk() | |
| if chunk is None: | |
| raise HTTPException(status_code=408, detail="Chunk not ready within timeout") | |
| return { | |
| "chunk": { | |
| "index": chunk.index, | |
| "audio_base64": chunk.audio_base64, | |
| "metadata": chunk.metadata | |
| } | |
| } | |
| def jam_consume(session_id: str = Form(...), chunk_index: int = Form(...)): | |
| """ | |
| Mark a chunk as consumed by the frontend. | |
| This helps the worker manage its buffer and generation flow. | |
| """ | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None or not worker.is_alive(): | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| worker.mark_chunk_consumed(chunk_index) | |
| return {"consumed": chunk_index} | |
| def jam_stop(session_id: str = Body(..., embed=True)): | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None: | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| worker.stop() | |
| worker.join(timeout=5.0) | |
| if worker.is_alive(): | |
| # It’s daemon=True, so it won’t block process exit, but report it | |
| print(f"⚠️ JamWorker {session_id} did not stop within timeout") | |
| with jam_lock: | |
| jam_registry.pop(session_id, None) | |
| return {"stopped": True} | |
| def jam_update( | |
| session_id: str = Form(...), | |
| # knobs | |
| guidance_weight: Optional[float] = Form(None), | |
| temperature: Optional[float] = Form(None), | |
| topk: Optional[int] = Form(None), | |
| # styles | |
| styles: str = Form(""), | |
| style_weights: str = Form(""), | |
| loop_weight: Optional[float] = Form(None), | |
| use_current_mix_as_style: bool = Form(False), | |
| # NEW steering | |
| mean: Optional[float] = Form(None), | |
| centroid_weights: str = Form(""), | |
| ): | |
| asset_manager.ensure_assets_loaded(get_mrt()) | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None or not worker.is_alive(): | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| # 1) fast knob updates | |
| if any(v is not None for v in (guidance_weight, temperature, topk)): | |
| worker.update_knobs( | |
| guidance_weight=guidance_weight, | |
| temperature=temperature, | |
| topk=topk | |
| ) | |
| # 2) rebuild style only if asked | |
| wants_style_update = ( | |
| use_current_mix_as_style | |
| or (styles.strip() != "") | |
| or (mean is not None) | |
| or (centroid_weights.strip() != "") | |
| ) | |
| if not wants_style_update: | |
| return {"ok": True} | |
| # --- parse inputs (robust) --- | |
| text_list = [s.strip() for s in (styles.split(",") if styles else []) if s.strip()] | |
| try: | |
| tw = [float(x) for x in style_weights.split(",")] if style_weights else [] | |
| except ValueError: | |
| tw = [] | |
| try: | |
| cw = [float(x) for x in centroid_weights.split(",")] if centroid_weights else [] | |
| except ValueError: | |
| cw = [] | |
| # Clamp centroid weights to available centroids (if loaded) | |
| max_c = 0 if _CENTROIDS is None else int(_CENTROIDS.shape[0]) | |
| if max_c and len(cw) > max_c: | |
| cw = cw[:max_c] | |
| # Snapshot minimal state under lock | |
| with worker._lock: | |
| combined_loop = worker.params.combined_loop if use_current_mix_as_style else None | |
| lw = None | |
| if use_current_mix_as_style: | |
| lw = 1.0 if (loop_weight is None) else float(loop_weight) | |
| mrt = worker.mrt | |
| # Heavy work OUTSIDE the lock | |
| loop_embed = None | |
| if combined_loop is not None: | |
| loop_embed = mrt.embed_style(combined_loop) | |
| style_vec = build_style_vector( | |
| mrt, | |
| text_styles=text_list, | |
| text_weights=tw, | |
| loop_embed=loop_embed, # None => ignored by builder | |
| loop_weight=lw, # None => ignored by builder | |
| mean_weight=(None if mean is None else float(mean)), | |
| centroid_weights=cw, # [] => ignored by builder | |
| ).astype(np.float32, copy=False) | |
| # Swap atomically | |
| with worker._lock: | |
| worker.params.style_vec = style_vec | |
| return {"ok": True} | |
| def jam_reseed(session_id: str = Form(...), loop_audio: UploadFile = File(None)): | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None or not worker.is_alive(): | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| # Option 1: use uploaded new “combined” bounce from the app | |
| if loop_audio is not None: | |
| data = loop_audio.file.read() | |
| if not data: | |
| raise HTTPException(status_code=400, detail="Empty file") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(data); path = tmp.name | |
| wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo() | |
| else: | |
| # Option 2: reseed from what we’ve been streaming (the model side) | |
| # (Usually better to reseed from the Swift-side “combined” mix you trust.) | |
| s = getattr(worker, "_stream", None) | |
| if s is None or s.shape[0] == 0: | |
| raise HTTPException(status_code=400, detail="No internal stream to reseed from") | |
| wav = au.Waveform(s.astype(np.float32, copy=False), int(worker.mrt.sample_rate)).as_stereo() | |
| worker.reseed_from_waveform(wav) | |
| return {"ok": True} | |
| def jam_reseed_splice( | |
| session_id: str = Form(...), | |
| anchor_bars: float = Form(2.0), # how much of the original to re-inject | |
| combined_audio: UploadFile = File(None), # preferred: Swift supplies the current combined mix | |
| ): | |
| worker = jam_registry.get(session_id) | |
| if worker is None or not worker.is_alive(): | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| # Build a waveform to reseed from | |
| wav = None | |
| if combined_audio is not None: | |
| data = combined_audio.file.read() | |
| if not data: | |
| raise HTTPException(status_code=400, detail="Empty combined_audio") | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(data) | |
| path = tmp.name | |
| wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo() | |
| else: | |
| # Fallback: reseed from the model’s internal stream (less ideal than the Swift-side bounce) | |
| s = getattr(worker, "_stream", None) | |
| if s is None or s.shape[0] == 0: | |
| raise HTTPException(status_code=400, detail="No audio available to reseed from") | |
| wav = au.Waveform(s.astype(np.float32, copy=False), int(worker.mrt.sample_rate)).as_stereo() | |
| # Perform the splice reseed | |
| worker.reseed_splice(wav, anchor_bars=float(anchor_bars)) | |
| return {"ok": True, "anchor_bars": float(anchor_bars)} | |
| def jam_status(session_id: str): | |
| with jam_lock: | |
| worker = jam_registry.get(session_id) | |
| if worker is None: | |
| raise HTTPException(status_code=404, detail="Session not found") | |
| running = worker.is_alive() | |
| # Snapshot safely | |
| with worker._lock: | |
| last_generated = int(worker.idx) | |
| last_delivered = int(worker._last_delivered_index) | |
| queued = len(worker.outbox) | |
| buffer_ahead = last_generated - last_delivered | |
| p = worker.params | |
| spb = p.beats_per_bar * (60.0 / p.bpm) | |
| chunk_secs = p.bars_per_chunk * spb | |
| return { | |
| "running": running, | |
| "last_generated_index": last_generated, # Last chunk that finished generating | |
| "last_delivered_index": last_delivered, # Last chunk sent to frontend | |
| "buffer_ahead": buffer_ahead, # How many chunks ahead we are | |
| "queued_chunks": queued, # Total chunks in outbox | |
| "bpm": p.bpm, | |
| "beats_per_bar": p.beats_per_bar, | |
| "bars_per_chunk": p.bars_per_chunk, | |
| "seconds_per_bar": spb, | |
| "chunk_duration_seconds": chunk_secs, | |
| "target_sample_rate": p.target_sr, | |
| "last_chunk_started_at": worker.last_chunk_started_at, | |
| "last_chunk_completed_at": worker.last_chunk_completed_at, | |
| } | |
| def health(): | |
| # 1) Template mode → not ready (encourage duplication on GPU) | |
| if SPACE_MODE != "serve": | |
| return JSONResponse( | |
| status_code=503, | |
| content={ | |
| "ok": False, | |
| "status": "template_mode", | |
| "message": "This Space is a GPU template. Duplicate it and select an L40s/A100-class runtime to use the API.", | |
| "mode": SPACE_MODE, | |
| }, | |
| ) | |
| # 2) Runtime hardware probe | |
| probe = _gpu_probe() | |
| if not probe["ok"] or not probe["has_gpu"] or probe.get("backend") != "gpu": | |
| return JSONResponse( | |
| status_code=503, | |
| content={ | |
| "ok": False, | |
| "status": "gpu_unavailable", | |
| "message": "GPU is not visible to JAX. Select a GPU runtime (e.g., L40s) to serve.", | |
| "probe": probe, | |
| "mode": SPACE_MODE, | |
| }, | |
| ) | |
| # 3) Ready; include operational hints | |
| warmed = bool(_WARMED) | |
| with jam_lock: | |
| active_jams = sum(1 for w in jam_registry.values() if w.is_alive()) | |
| return { | |
| "ok": True, | |
| "status": "ready" if warmed else "initializing", | |
| "mode": SPACE_MODE, | |
| "warmed": warmed, | |
| "active_jams": active_jams, | |
| "probe": probe, | |
| } | |
| async def log_requests(request: Request, call_next): | |
| rid = request.headers.get("X-Request-ID", "-") | |
| print(f"📥 {request.method} {request.url.path}?{request.url.query} [rid={rid}]") | |
| try: | |
| response = await call_next(request) | |
| except Exception as e: | |
| print(f"💥 exception for {request.url.path} [rid={rid}]: {e}") | |
| raise | |
| print(f"📤 {response.status_code} {request.url.path} [rid={rid}]") | |
| return response | |
| # ---------------------------- | |
| # websockets route | |
| # ---------------------------- | |
| async def ws_jam(websocket: WebSocket): | |
| await websocket.accept() | |
| sid = None | |
| worker = None | |
| binary_audio = False | |
| mode = "rt" # or "bar" | |
| # NEW: capture ws in closure | |
| async def send_json(obj): | |
| return await send_json_safe(websocket, obj) | |
| try: | |
| while True: | |
| raw = await websocket.receive_text() | |
| msg = json.loads(raw) | |
| mtype = msg.get("type") | |
| # --- START --- | |
| if mtype == "start": | |
| binary_audio = bool(msg.get("binary_audio", False)) | |
| mode = msg.get("mode", "rt") | |
| params = msg.get("params", {}) or {} | |
| sid = msg.get("session_id") | |
| # attach or create | |
| if sid: | |
| with jam_lock: | |
| worker = jam_registry.get(sid) | |
| if worker is None or not worker.is_alive(): | |
| await send_json({"type":"error","error":"Session not found"}) | |
| continue | |
| else: | |
| # optionally accept base64 loop and start a new worker (bar-mode) | |
| if mode == "bar": | |
| loop_b64 = msg.get("loop_audio_b64") | |
| if not loop_b64: | |
| await send_json({"type":"error","error":"loop_audio_b64 required for mode=bar when no session_id"}) | |
| continue | |
| loop_bytes = base64.b64decode(loop_b64) | |
| # mimic /jam/start | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(loop_bytes); tmp_path = tmp.name | |
| # build JamParams similar to /jam/start | |
| mrt = get_mrt() | |
| model_sr = int(mrt.sample_rate) # typically 48000 | |
| # Defaults for WS: raw loudness @ model SR, unless overridden by client: | |
| target_sr = int(params.get("target_sr", model_sr)) | |
| loudness_mode = params.get("loudness_mode", "none") | |
| headroom_db = float(params.get("headroom_db", 1.0)) | |
| loop = au.Waveform.from_file(tmp_path).resample(mrt.sample_rate).as_stereo() | |
| codec_fps = float(mrt.codec.frame_rate) | |
| ctx_seconds = float(mrt.config.context_length_frames) / codec_fps | |
| bpm = float(params.get("bpm", 120.0)) | |
| bpb = int(params.get("beats_per_bar", 4)) | |
| loop_tail = take_bar_aligned_tail(loop, bpm, bpb, ctx_seconds) | |
| # style vector (loop + extra styles) | |
| embeds, weights = [mrt.embed_style(loop_tail)], [float(params.get("loop_weight", 1.0))] | |
| extra = [s for s in (params.get("styles","").split(",")) if s.strip()] | |
| sw = [float(x) for x in params.get("style_weights","").split(",") if x.strip()] | |
| for i, s in enumerate(extra): | |
| embeds.append(mrt.embed_style(s.strip())) | |
| weights.append(sw[i] if i < len(sw) else 1.0) | |
| wsum = sum(weights) or 1.0 | |
| weights = [w/wsum for w in weights] | |
| style_vec = np.sum([w*e for w, e in zip(weights, embeds)], axis=0).astype(np.float32) | |
| # target SR fallback: input SR | |
| inp_info = sf.info(tmp_path) | |
| target_sr = int(params.get("target_sr", int(inp_info.samplerate))) | |
| # Build JamParams for WS bar-mode | |
| jp = JamParams( | |
| bpm=bpm, beats_per_bar=bpb, bars_per_chunk=int(params.get("bars_per_chunk", 8)), | |
| target_sr=target_sr, | |
| loudness_mode=loudness_mode, headroom_db=headroom_db, | |
| style_vec=style_vec, | |
| ref_loop=None if loudness_mode == "none" else loop_tail, # disable match by default | |
| combined_loop=loop, | |
| guidance_weight=float(params.get("guidance_weight", 1.1)), | |
| temperature=float(params.get("temperature", 1.1)), | |
| topk=int(params.get("topk", 40)), | |
| ) | |
| worker = JamWorker(get_mrt(), jp) | |
| sid = str(uuid.uuid4()) | |
| with jam_lock: | |
| # single active jam per GPU, mirroring /jam/start | |
| for _sid, w in list(jam_registry.items()): | |
| if w.is_alive(): | |
| await send_json({"type":"error","error":"A jam is already running"}) | |
| worker = None; sid = None | |
| break | |
| if worker is not None: | |
| jam_registry[sid] = worker | |
| worker.start() | |
| else: | |
| # mode == "rt" (Colab-style, no loop context) | |
| mrt = get_mrt() | |
| state = mrt.init_state() | |
| # Build silent context (10s) tokens | |
| codec_fps = float(mrt.codec.frame_rate) | |
| ctx_seconds = float(mrt.config.context_length_frames) / codec_fps | |
| sr = int(mrt.sample_rate) | |
| samples = int(max(1, round(ctx_seconds * sr))) | |
| silent = au.Waveform(np.zeros((samples, 2), np.float32), sr) | |
| tokens = mrt.codec.encode(silent).astype(np.int32)[:, :mrt.config.decoder_codec_rvq_depth] | |
| state.context_tokens = tokens | |
| # Parse params (including steering) | |
| asset_manager.ensure_assets_loaded(get_mrt()) | |
| styles_str = params.get("styles", "warmup") or "" | |
| style_weights_str = params.get("style_weights", "") or "" | |
| mean_w = float(params.get("mean", 0.0) or 0.0) | |
| cw_str = str(params.get("centroid_weights", "") or "") | |
| text_list = [s.strip() for s in styles_str.split(",") if s.strip()] | |
| try: | |
| text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else [] | |
| except ValueError: | |
| text_w = [] | |
| try: | |
| cw = [float(x) for x in cw_str.split(",") if x.strip() != ""] | |
| except ValueError: | |
| cw = [] | |
| # Clamp centroid weights to available centroids | |
| if _CENTROIDS is not None and len(cw) > int(_CENTROIDS.shape[0]): | |
| cw = cw[: int(_CENTROIDS.shape[0])] | |
| # Build initial style vector (no loop_embed in rt mode) | |
| style_vec = build_style_vector( | |
| mrt, | |
| text_styles=text_list, | |
| text_weights=text_w, | |
| loop_embed=None, | |
| loop_weight=None, | |
| mean_weight=mean_w, | |
| centroid_weights=cw, | |
| ) | |
| # Stash rt session fields | |
| websocket._mrt = mrt | |
| websocket._state = state | |
| websocket._style_cur = style_vec | |
| websocket._style_tgt = style_vec | |
| websocket._style_ramp_s = float(params.get("style_ramp_seconds", 0.0)) | |
| websocket._rt_mean = mean_w | |
| websocket._rt_centroid_weights = cw | |
| websocket._rt_running = True | |
| websocket._rt_sr = sr | |
| websocket._rt_topk = int(params.get("topk", 40)) | |
| websocket._rt_temp = float(params.get("temperature", 1.1)) | |
| websocket._rt_guid = float(params.get("guidance_weight", 1.1)) | |
| websocket._pace = params.get("pace", "asap") # "realtime" | "asap" | |
| # (Optional) report whether steering assets were loaded | |
| assets_ok = (_MEAN_EMBED is not None) or (_CENTROIDS is not None) | |
| await send_json({"type": "started", "mode": "rt", "steering_assets": "loaded" if assets_ok else "none"}) | |
| # kick off the ~2s streaming loop | |
| async def _rt_loop(): | |
| try: | |
| mrt = websocket._mrt | |
| chunk_secs = (mrt.config.chunk_length_frames * mrt.config.frame_length_samples) / float(mrt.sample_rate) | |
| target_next = time.perf_counter() | |
| while websocket._rt_running: | |
| mrt.guidance_weight = websocket._rt_guid | |
| mrt.temperature = websocket._rt_temp | |
| mrt.topk = websocket._rt_topk | |
| # ramp style | |
| ramp = float(getattr(websocket, "_style_ramp_s", 0.0) or 0.0) | |
| if ramp <= 0.0: | |
| websocket._style_cur = websocket._style_tgt | |
| else: | |
| step = min(1.0, chunk_secs / ramp) | |
| websocket._style_cur = websocket._style_cur + step * (websocket._style_tgt - websocket._style_cur) | |
| wav, new_state = mrt.generate_chunk(state=websocket._state, style=websocket._style_cur) | |
| websocket._state = new_state | |
| x = wav.samples.astype(np.float32, copy=False) | |
| buf = io.BytesIO() | |
| sf.write(buf, x, mrt.sample_rate, subtype="FLOAT", format="WAV") | |
| ok = True | |
| if binary_audio: | |
| try: | |
| await websocket.send_bytes(buf.getvalue()) | |
| ok = await send_json({"type": "chunk_meta", "metadata": {"sample_rate": mrt.sample_rate}}) | |
| except Exception: | |
| ok = False | |
| else: | |
| b64 = base64.b64encode(buf.getvalue()).decode("utf-8") | |
| ok = await send_json({"type": "chunk", "audio_base64": b64, | |
| "metadata": {"sample_rate": mrt.sample_rate}}) | |
| if not ok: | |
| break | |
| if getattr(websocket, "_pace", "asap") == "realtime": | |
| t1 = time.perf_counter() | |
| target_next += chunk_secs | |
| sleep_s = max(0.0, target_next - t1 - 0.02) | |
| if sleep_s > 0: | |
| await asyncio.sleep(sleep_s) | |
| except asyncio.CancelledError: | |
| pass | |
| except Exception: | |
| pass | |
| websocket._rt_task = asyncio.create_task(_rt_loop()) | |
| continue # skip the “bar-mode started” message below | |
| await send_json({"type":"started","session_id": sid, "mode": mode}) | |
| # if we’re in bar-mode, begin pushing chunks as they arrive | |
| if mode == "bar" and worker is not None: | |
| async def _pump(): | |
| while True: | |
| if not worker.is_alive(): | |
| break | |
| chunk = worker.get_next_chunk(timeout=60.0) | |
| if chunk is None: | |
| continue | |
| if binary_audio: | |
| await websocket.send_bytes(base64.b64decode(chunk.audio_base64)) | |
| await send_json({"type":"chunk_meta","index":chunk.index,"metadata":chunk.metadata}) | |
| else: | |
| await send_json({"type":"chunk","index":chunk.index, | |
| "audio_base64":chunk.audio_base64,"metadata":chunk.metadata}) | |
| asyncio.create_task(_pump()) | |
| # --- UPDATES (bar or rt) --- | |
| elif mtype == "update": | |
| if mode == "bar": | |
| if not sid: | |
| await send_json({"type":"error","error":"No session_id yet"}); return | |
| # fan values straight into your existing HTTP handler: | |
| res = jam_update( | |
| session_id=sid, | |
| guidance_weight=msg.get("guidance_weight"), | |
| temperature=msg.get("temperature"), | |
| topk=msg.get("topk"), | |
| styles=msg.get("styles",""), | |
| style_weights=msg.get("style_weights",""), | |
| loop_weight=msg.get("loop_weight"), | |
| use_current_mix_as_style=bool(msg.get("use_current_mix_as_style", False)), | |
| ) | |
| await send_json({"type":"status", **res}) # {"ok": True} | |
| else: | |
| # rt-mode: there’s no JamWorker; update the local knobs/state | |
| websocket._rt_temp = float(msg.get("temperature", websocket._rt_temp)) | |
| websocket._rt_topk = int(msg.get("topk", websocket._rt_topk)) | |
| websocket._rt_guid = float(msg.get("guidance_weight", websocket._rt_guid)) | |
| # NEW steering fields | |
| if "mean" in msg and msg["mean"] is not None: | |
| try: websocket._rt_mean = float(msg["mean"]) | |
| except: websocket._rt_mean = 0.0 | |
| if "centroid_weights" in msg: | |
| cw = [w.strip() for w in str(msg["centroid_weights"]).split(",") if w.strip() != ""] | |
| try: | |
| websocket._rt_centroid_weights = [float(x) for x in cw] | |
| except: | |
| websocket._rt_centroid_weights = [] | |
| # styles / text weights (optional, comma-separated) | |
| styles_str = msg.get("styles", None) | |
| style_weights_str = msg.get("style_weights", "") | |
| text_list = [s for s in (styles_str.split(",") if styles_str else []) if s.strip()] | |
| text_w = [float(x) for x in style_weights_str.split(",")] if style_weights_str else [] | |
| asset_manager.ensure_assets_loaded(get_mrt()) | |
| websocket._style_tgt = build_style_vector( | |
| websocket._mrt, | |
| text_styles=text_list, | |
| text_weights=text_w, | |
| loop_embed=None, | |
| loop_weight=None, | |
| mean_weight=float(websocket._rt_mean), | |
| centroid_weights=websocket._rt_centroid_weights, | |
| ) | |
| # optionally allow live changes to ramp: | |
| if "style_ramp_seconds" in msg: | |
| try: websocket._style_ramp_s = float(msg["style_ramp_seconds"]) | |
| except: pass | |
| await send_json({"type":"status","updated":"rt-knobs+style"}) | |
| elif mtype == "consume" and mode == "bar": | |
| with jam_lock: | |
| worker = jam_registry.get(msg.get("session_id")) | |
| if worker is not None: | |
| worker.mark_chunk_consumed(int(msg.get("chunk_index", -1))) | |
| elif mtype == "reseed" and mode == "bar": | |
| with jam_lock: | |
| worker = jam_registry.get(msg.get("session_id")) | |
| if worker is None or not worker.is_alive(): | |
| await send_json({"type":"error","error":"Session not found"}); continue | |
| loop_b64 = msg.get("loop_audio_b64") | |
| if not loop_b64: | |
| await send_json({"type":"error","error":"loop_audio_b64 required"}); continue | |
| loop_bytes = base64.b64decode(loop_b64) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(loop_bytes); path = tmp.name | |
| wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo() | |
| worker.reseed_from_waveform(wav) | |
| await send_json({"type":"status","reseeded":True}) | |
| elif mtype == "reseed_splice" and mode == "bar": | |
| with jam_lock: | |
| worker = jam_registry.get(msg.get("session_id")) | |
| if worker is None or not worker.is_alive(): | |
| await send_json({"type":"error","error":"Session not found"}); continue | |
| anchor = float(msg.get("anchor_bars", 2.0)) | |
| b64 = msg.get("combined_audio_b64") | |
| if b64: | |
| data = base64.b64decode(b64) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp: | |
| tmp.write(data); path = tmp.name | |
| wav = au.Waveform.from_file(path).resample(worker.mrt.sample_rate).as_stereo() | |
| worker.reseed_splice(wav, anchor_bars=anchor) | |
| else: | |
| # fallback: model-side stream splice | |
| worker.reseed_splice(worker.params.combined_loop, anchor_bars=anchor) | |
| await send_json({"type":"status","splice":anchor}) | |
| elif mtype == "stop": | |
| if mode == "rt": | |
| websocket._rt_running = False | |
| task = getattr(websocket, "_rt_task", None) | |
| if task is not None: | |
| task.cancel() | |
| try: await task | |
| except asyncio.CancelledError: pass | |
| await send_json({"type":"stopped"}) | |
| break # <- add this if you want to end the socket after stop | |
| elif mtype == "ping": | |
| await send_json({"type":"pong"}) | |
| else: | |
| await send_json({"type":"error","error":f"Unknown type {mtype}"}) | |
| except WebSocketDisconnect: | |
| # best-effort cleanup for bar-mode sessions started within this socket (optional) | |
| pass | |
| except Exception as e: | |
| try: | |
| await send_json({"type":"error","error":str(e)}) | |
| except Exception: | |
| pass | |
| finally: | |
| try: | |
| if websocket.client_state != WebSocketState.DISCONNECTED: | |
| await websocket.close() | |
| except Exception: | |
| pass | |
| def ping(): | |
| return {"ok": True} | |
| def read_root(): | |
| """Root endpoint that explains what this API does""" | |
| try: | |
| html_file = Path(__file__).parent / "documentation.html" | |
| html_content = html_file.read_text(encoding='utf-8') | |
| except FileNotFoundError: | |
| # Fallback if file is missing | |
| html_content = """ | |
| <!DOCTYPE html> | |
| <html><body> | |
| <h1>MagentaRT Research API</h1> | |
| <p>Documentation file not found. Please check documentation.html</p> | |
| </body></html> | |
| """ | |
| return Response(content=html_content, media_type="text/html") |