File size: 24,025 Bytes
			
			| 7ae6392 d1afbc8 184daaa 7ae6392 d1afbc8 7ae6392 d1afbc8 7ae6392 d1afbc8 7ae6392 d1afbc8 7ae6392 d1afbc8 c188e5c 7ae6392 c188e5c 7ae6392 c188e5c 7ae6392 c188e5c 7ae6392 7fe8be5 c188e5c 7ae6392 7fe8be5 7ae6392 946680d 7ae6392 d1afbc8 7ae6392 8cedcd0 5709926 7ae6392 8cedcd0 7ae6392 8cedcd0 7ae6392 946680d 7ae6392 8cedcd0 7ae6392 8cedcd0 7ae6392 15a3b0b 7ae6392 8cedcd0 7ae6392 8cedcd0 7ae6392 d1afbc8 7ae6392 d1afbc8 7ae6392 5709926 7ae6392 d1afbc8 946680d d1afbc8 7ae6392 184daaa 7ae6392 184daaa 7ae6392 5709926 7ae6392 184daaa 7ae6392 184daaa 7ae6392 5709926 7ae6392 2ab3869 02fcba6 7ae6392 02fcba6 184daaa 02fcba6 7ae6392 02fcba6 7fe8be5 02fcba6 5709926 7fe8be5 02fcba6 946680d 2ab3869 946680d 2ab3869 946680d 5709926 946680d 2ab3869 946680d 2ab3869 946680d 2ab3869 946680d a39bbc9 02fcba6 7ae6392 8cedcd0 7ae6392 15a3b0b 7ae6392 7fe8be5 7ae6392 7fe8be5 7ae6392 15a3b0b 7ae6392 7fe8be5 7ae6392 2d4dad3 7ae6392 5709926 946680d 2ab3869 946680d 2ab3869 946680d 2ab3869 946680d 2ab3869 5709926 2ab3869 5709926 7ae6392 8cedcd0 d1afbc8 7ae6392 5709926 7ae6392 7fe8be5 1b98b73 7ae6392 5709926 2d4dad3 7ae6392 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | # jam_worker.py - Bar-locked spool rewrite
from __future__ import annotations
import threading, time
from dataclasses import dataclass
from fractions import Fraction
from typing import Optional, Dict, Tuple, List
import numpy as np
from magenta_rt import audio as au
from utils import (
    StreamingResampler,
    match_loudness_to_reference,
    make_bar_aligned_context,
    take_bar_aligned_tail,
    wav_bytes_base64,
)
# -----------------------------
# Data classes
# -----------------------------
@dataclass
class JamParams:
    bpm: float
    beats_per_bar: int
    bars_per_chunk: int
    target_sr: int
    loudness_mode: str = "auto"
    headroom_db: float = 1.0
    style_vec: Optional[np.ndarray] = None
    ref_loop: Optional[au.Waveform] = None
    combined_loop: Optional[au.Waveform] = None
    guidance_weight: float = 1.1
    temperature: float = 1.1
    topk: int = 40
@dataclass
class JamChunk:
    index: int
    audio_base64: str
    metadata: dict
# -----------------------------
# Helpers
# -----------------------------
class BarClock:
    """Sample-domain bar clock with drift-free absolute boundaries."""
    def __init__(self, target_sr: int, bpm: float, beats_per_bar: int, base_offset_samples: int = 0):
        self.sr = int(target_sr)
        self.bpm = Fraction(str(bpm))  # exact decimal to avoid FP drift
        self.beats_per_bar = int(beats_per_bar)
        self.bar_samps = Fraction(self.sr * 60 * self.beats_per_bar, 1) / self.bpm
        self.base = int(base_offset_samples)
    def bounds_for_chunk(self, chunk_index: int, bars_per_chunk: int) -> Tuple[int, int]:
        start_f = self.base + self.bar_samps * (chunk_index * bars_per_chunk)
        end_f   = self.base + self.bar_samps * ((chunk_index + 1) * bars_per_chunk)
        return int(round(start_f)), int(round(end_f))
    def seconds_per_bar(self) -> float:
        return float(self.beats_per_bar) * (60.0 / float(self.bpm))
# -----------------------------
# Worker
# -----------------------------
class JamWorker(threading.Thread):
    FRAMES_PER_SECOND: float | None = None  # filled in __init__ once codec is available
    """Generates continuous audio with MagentaRT, spools it at target SR,
    and emits *sample-accurate*, bar-aligned chunks (no FPS drift)."""
    def __init__(self, mrt, params: JamParams):
        super().__init__(daemon=True)
        self.mrt = mrt
        self.params = params
        # external callers (FastAPI endpoints) use this for atomic updates
        self._lock = threading.RLock()
        # generation state
        self.state = self.mrt.init_state()
        self.mrt.guidance_weight = float(self.params.guidance_weight)
        self.mrt.temperature     = float(self.params.temperature)
        self.mrt.topk            = int(self.params.topk)
        # style vector (already normalized upstream)
        self._style_vec = self.params.style_vec
        # codec/setup
        self._codec_fps = float(self.mrt.codec.frame_rate)
        JamWorker.FRAMES_PER_SECOND = self._codec_fps
        self._ctx_frames = int(self.mrt.config.context_length_frames)
        self._ctx_seconds = self._ctx_frames / self._codec_fps
        # model stream (model SR) for internal continuity/crossfades
        self._model_stream: Optional[np.ndarray] = None
        self._model_sr = int(self.mrt.sample_rate)
        # target-SR in-RAM spool (what we cut loops from)
        if int(self.params.target_sr) != int(self._model_sr):
            self._rs = StreamingResampler(self._model_sr, int(self.params.target_sr), channels=2)
        else:
            self._rs = None
        self._spool = np.zeros((0, 2), dtype=np.float32)   # (S,2) target SR
        self._spool_written = 0                            # absolute frames written into spool
        # bar clock: start with offset 0; if you have a downbeat estimator, set base later
        self._bar_clock = BarClock(self.params.target_sr, self.params.bpm, self.params.beats_per_bar, base_offset_samples=0)
        # emission counters
        self.idx = 0  # next chunk index to *produce*
        self._next_to_deliver = 0  # next chunk index to hand out via get_next_chunk()
        self._last_consumed_index = -1  # updated via mark_chunk_consumed(); generation throttle uses this
        # outbox and synchronization
        self._outbox: Dict[int, JamChunk] = {}
        self._cv = threading.Condition()
        # control flags
        self._stop_event = threading.Event()
        self._max_buffer_ahead = 5
        # reseed queues (install at next bar boundary after emission)
        self._pending_reseed: Optional[dict] = None           # legacy full reset path (kept for fallback)
        self._pending_token_splice: Optional[dict] = None     # seamless token splice
        # Prepare initial context from combined loop (best musical alignment)
        if self.params.combined_loop is not None:
            self._install_context_from_loop(self.params.combined_loop)
    # ---------- lifecycle ----------
    def stop(self):
        self._stop_event.set()
    # FastAPI reads this to block until the next sequential chunk is ready
    def get_next_chunk(self, timeout: float = 30.0) -> Optional[JamChunk]:
        deadline = time.time() + timeout
        with self._cv:
            while True:
                c = self._outbox.get(self._next_to_deliver)
                if c is not None:
                    self._next_to_deliver += 1
                    return c
                remaining = deadline - time.time()
                if remaining <= 0:
                    return None
                self._cv.wait(timeout=min(0.25, remaining))
    def mark_chunk_consumed(self, chunk_index: int):
        # This lets the generator run ahead, but not too far
        with self._cv:
            self._last_consumed_index = max(self._last_consumed_index, int(chunk_index))
            # purge old chunks to cap memory
            for k in list(self._outbox.keys()):
                if k < self._last_consumed_index - 1:
                    self._outbox.pop(k, None)
    def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None):
        with self._lock:
            if guidance_weight is not None:
                self.params.guidance_weight = float(guidance_weight)
            if temperature is not None:
                self.params.temperature = float(temperature)
            if topk is not None:
                self.params.topk = int(topk)
            # push into mrt
            self.mrt.guidance_weight = float(self.params.guidance_weight)
            self.mrt.temperature     = float(self.params.temperature)
            self.mrt.topk            = int(self.params.topk)
    # ---------- context / reseed ----------
    def _expected_token_shape(self) -> Tuple[int, int]:
        F = int(self._ctx_frames)
        D = int(self.mrt.config.decoder_codec_rvq_depth)
        return F, D
    def _coerce_tokens(self, toks: np.ndarray) -> np.ndarray:
        """Force tokens to (context_length_frames, rvq_depth), padding/trimming as needed.
        Pads missing frames by repeating the last frame (safer than zeros for RVQ stacks)."""
        F, D = self._expected_token_shape()
        if toks.ndim != 2:
            toks = np.atleast_2d(toks)
        # depth first
        if toks.shape[1] > D:
            toks = toks[:, :D]
        elif toks.shape[1] < D:
            pad_cols = np.tile(toks[:, -1:], (1, D - toks.shape[1]))
            toks = np.concatenate([toks, pad_cols], axis=1)
        # frames
        if toks.shape[0] < F:
            if toks.shape[0] == 0:
                toks = np.zeros((1, D), dtype=np.int32)
            pad = np.repeat(toks[-1:, :], F - toks.shape[0], axis=0)
            toks = np.concatenate([pad, toks], axis=0)
        elif toks.shape[0] > F:
            toks = toks[-F:, :]
        if toks.dtype != np.int32:
            toks = toks.astype(np.int32, copy=False)
        return toks
    def _encode_exact_context_tokens(self, loop: au.Waveform) -> np.ndarray:
        """Build *exactly* context_length_frames worth of tokens (e.g., 250 @ 25fps),
        while ensuring the *end* of the audio lands on a bar boundary.
        Strategy: take the largest integer number of bars <= ctx_seconds as the tail,
        then left-fill from just before that tail (wrapping if needed) to reach exactly
        ctx_seconds; finally, pad/trim to exact samples and, as a last resort, pad/trim
        tokens to the expected frame count.
        """
        wav = loop.as_stereo().resample(self._model_sr)
        data = wav.samples.astype(np.float32, copy=False)
        if data.ndim == 1:
            data = data[:, None]
        spb = self._bar_clock.seconds_per_bar()
        ctx_sec = float(self._ctx_seconds)
        sr = int(self._model_sr)
        # bars that fit fully inside ctx_sec (at least 1)
        bars_fit = max(1, int(ctx_sec // spb))
        tail_len_samps = int(round(bars_fit * spb * sr))
        # ensure we have enough source by tiling
        need = int(round(ctx_sec * sr)) + tail_len_samps
        if data.shape[0] == 0:
            data = np.zeros((1, 2), dtype=np.float32)
        reps = int(np.ceil(need / float(data.shape[0])))
        tiled = np.tile(data, (reps, 1))
        end = tiled.shape[0]
        tail = tiled[end - tail_len_samps:end]
        # left-fill to reach exact ctx samples (keeps end-of-bar alignment)
        ctx_samps = int(round(ctx_sec * sr))
        pad_len = ctx_samps - tail.shape[0]
        if pad_len > 0:
            pre = tiled[end - tail_len_samps - pad_len:end - tail_len_samps]
            ctx = np.concatenate([pre, tail], axis=0)
        else:
            ctx = tail[-ctx_samps:]
        # final snap to *exact* ctx samples
        if ctx.shape[0] < ctx_samps:
            pad = np.zeros((ctx_samps - ctx.shape[0], ctx.shape[1]), dtype=np.float32)
            ctx = np.concatenate([pad, ctx], axis=0)
        elif ctx.shape[0] > ctx_samps:
            ctx = ctx[-ctx_samps:]
        exact = au.Waveform(ctx, sr)
        tokens_full = self.mrt.codec.encode(exact).astype(np.int32)
        depth = int(self.mrt.config.decoder_codec_rvq_depth)
        tokens = tokens_full[:, :depth]
        # Force expected (F,D) at *return time*
        tokens = self._coerce_tokens(tokens)
        return tokens
    def _encode_exact_context_tokens(self, loop: au.Waveform) -> np.ndarray:
        """Build *exactly* context_length_frames worth of tokens (e.g., 250 @ 25fps),
        while ensuring the *end* of the audio lands on a bar boundary.
        Strategy: take the largest integer number of bars <= ctx_seconds as the tail,
        then left-fill from just before that tail (wrapping if needed) to reach exactly
        ctx_seconds; finally, pad/trim to exact samples and, as a last resort, pad/trim
        tokens to the expected frame count.
        """
        wav = loop.as_stereo().resample(self._model_sr)
        data = wav.samples.astype(np.float32, copy=False)
        if data.ndim == 1:
            data = data[:, None]
        spb = self._bar_clock.seconds_per_bar()
        ctx_sec = float(self._ctx_seconds)
        sr = int(self._model_sr)
        # bars that fit fully inside ctx_sec (at least 1)
        bars_fit = max(1, int(ctx_sec // spb))
        tail_len_samps = int(round(bars_fit * spb * sr))
        # ensure we have enough source by tiling
        need = int(round(ctx_sec * sr)) + tail_len_samps
        if data.shape[0] == 0:
            data = np.zeros((1, 2), dtype=np.float32)
        reps = int(np.ceil(need / float(data.shape[0])))
        tiled = np.tile(data, (reps, 1))
        end = tiled.shape[0]
        tail = tiled[end - tail_len_samps:end]
        # left-fill to reach exact ctx samples (keeps end-of-bar alignment)
        ctx_samps = int(round(ctx_sec * sr))
        pad_len = ctx_samps - tail.shape[0]
        if pad_len > 0:
            pre = tiled[end - tail_len_samps - pad_len:end - tail_len_samps]
            ctx = np.concatenate([pre, tail], axis=0)
        else:
            ctx = tail[-ctx_samps:]
        # final snap to *exact* ctx samples
        if ctx.shape[0] < ctx_samps:
            pad = np.zeros((ctx_samps - ctx.shape[0], ctx.shape[1]), dtype=np.float32)
            ctx = np.concatenate([pad, ctx], axis=0)
        elif ctx.shape[0] > ctx_samps:
            ctx = ctx[-ctx_samps:]
        exact = au.Waveform(ctx, sr)
        tokens_full = self.mrt.codec.encode(exact).astype(np.int32)
        depth = int(self.mrt.config.decoder_codec_rvq_depth)
        tokens = tokens_full[:, :depth]
        # Last defense: force expected frame count
        frames = tokens.shape[0]
        exp = int(self._ctx_frames)
        if frames < exp:
            # repeat last frame
            pad = np.repeat(tokens[-1:, :], exp - frames, axis=0)
            tokens = np.concatenate([pad, tokens], axis=0)
        elif frames > exp:
            tokens = tokens[-exp:, :]
        return tokens
    def _install_context_from_loop(self, loop: au.Waveform):
        # Build exact-length, bar-locked context tokens
        context_tokens = self._encode_exact_context_tokens(loop)
        s = self.mrt.init_state()
        s.context_tokens = context_tokens
        self.state = s
        self._original_context_tokens = np.copy(context_tokens)
    def reseed_from_waveform(self, wav: au.Waveform):
        """Immediate reseed: replace context from provided wave (bar-locked, exact length)."""
        context_tokens = self._encode_exact_context_tokens(wav)
        with self._lock:
            s = self.mrt.init_state()
            s.context_tokens = context_tokens
            self.state = s
            self._model_stream = None  # drop model-domain continuity so next chunk starts cleanly
            self._original_context_tokens = np.copy(context_tokens)
    def reseed_splice(self, recent_wav: au.Waveform, anchor_bars: float):
        """Queue a *seamless* reseed by token splicing instead of full restart.
        We compute a fresh, bar-locked context token tensor of exact length
        (e.g., 250 frames), then splice only the *tail* corresponding to
        `anchor_bars` so generation continues smoothly without resetting state.
        """
        new_ctx = self._encode_exact_context_tokens(recent_wav)  # coerce to (F,D)
        F, D = self._expected_token_shape()
        # how many frames correspond to the requested anchor bars
        spb = self._bar_clock.seconds_per_bar()
        frames_per_bar = max(1, int(round(self._codec_fps * spb)))
        splice_frames = max(1, min(int(round(max(1.0, float(anchor_bars)) * frames_per_bar)), F))
        with self._lock:
            # snapshot current context
            cur = getattr(self.state, "context_tokens", None)
            if cur is None:
                # fall back to full reseed (still coerced)
                self._pending_reseed = {"ctx": new_ctx}
                return
            cur = self._coerce_tokens(cur)
            # build the spliced tensor: keep left (F - splice) from cur, take right (splice) from new
            left = cur[:F - splice_frames, :]
            right = new_ctx[F - splice_frames:, :]
            spliced = np.concatenate([left, right], axis=0)
            spliced = self._coerce_tokens(spliced)
            # queue for install at the *next bar boundary* right after emission
            self._pending_token_splice = {
                "tokens": spliced,
                "debug": {"F": F, "D": D, "splice_frames": splice_frames, "frames_per_bar": frames_per_bar}
            }
            
    def reseed_from_waveform(self, wav: au.Waveform):
        """Immediate reseed: replace context from provided wave (bar-aligned tail)."""
        wav = wav.as_stereo().resample(self._model_sr)
        tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, self._ctx_seconds)
        tokens_full = self.mrt.codec.encode(tail).astype(np.int32)
        depth = int(self.mrt.config.decoder_codec_rvq_depth)
        context_tokens = tokens_full[:, :depth]
        s = self.mrt.init_state()
        s.context_tokens = context_tokens
        self.state = s
        # reset model stream so next generate starts cleanly
        self._model_stream = None
        # optional loudness match will be applied per-chunk on emission
        # also remember this as new "original"
        self._original_context_tokens = np.copy(context_tokens)
    def reseed_splice(self, recent_wav: au.Waveform, anchor_bars: float):
        """Queue a splice reseed to be applied right after the next emitted loop.
        For now, we simply replace the context by recent wave tail; anchor is accepted
        for API compatibility and future crossfade/token-splice logic."""
        recent_wav = recent_wav.as_stereo().resample(self._model_sr)
        tail = take_bar_aligned_tail(recent_wav, self.params.bpm, self.params.beats_per_bar, self._ctx_seconds)
        tokens_full = self.mrt.codec.encode(tail).astype(np.int32)
        depth = int(self.mrt.config.decoder_codec_rvq_depth)
        new_ctx = tokens_full[:, :depth]
        self._pending_reseed = {"ctx": new_ctx}
    # ---------- core streaming helpers ----------
    def _append_model_chunk_and_spool(self, wav: au.Waveform):
        """Crossfade into the model-rate stream and write the *non-overlapped*
        tail to the target-SR spool."""
        s = wav.samples.astype(np.float32, copy=False)
        if s.ndim == 1:
            s = s[:, None]
        sr = self._model_sr
        xfade_s = float(self.mrt.config.crossfade_length)
        xfade_n = int(round(max(0.0, xfade_s) * sr))
        if self._model_stream is None:
            # first chunk: drop the preroll (xfade) then spool
            new_part = s[xfade_n:] if xfade_n < s.shape[0] else s[:0]
            self._model_stream = new_part.copy()
            if new_part.size:
                y = (new_part.astype(np.float32, copy=False)
                     if self._rs is None else
                     self._rs.process(new_part.astype(np.float32, copy=False), final=False))
                self._spool = np.concatenate([self._spool, y], axis=0)
                self._spool_written += y.shape[0]
            return
        # crossfade into existing stream
        if xfade_n > 0 and self._model_stream.shape[0] >= xfade_n and s.shape[0] >= xfade_n:
            tail = self._model_stream[-xfade_n:]
            head = s[:xfade_n]
            t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None]
            mixed = tail * np.cos(t) + head * np.sin(t)
            self._model_stream = np.concatenate([self._model_stream[:-xfade_n], mixed, s[xfade_n:]], axis=0)
            new_part = s[xfade_n:]
        else:
            self._model_stream = np.concatenate([self._model_stream, s], axis=0)
            new_part = s
        # spool only the *new* non-overlapped part
        if new_part.size:
            y = (new_part.astype(np.float32, copy=False)
                 if self._rs is None else
                 self._rs.process(new_part.astype(np.float32, copy=False), final=False))
            if y.size:
                self._spool = np.concatenate([self._spool, y], axis=0)
                self._spool_written += y.shape[0]
    def _should_generate_next_chunk(self) -> bool:
        # Allow running ahead relative to whichever is larger: last *consumed*
        # (explicit ack from client) or last *delivered* (implicit ack).
        implicit_consumed = self._next_to_deliver - 1  # last chunk handed to client
        horizon_anchor = max(self._last_consumed_index, implicit_consumed)
        return self.idx <= (horizon_anchor + self._max_buffer_ahead)
    def _emit_ready(self):
        """Emit next chunk(s) if the spool has enough samples."""
        while True:
            start, end = self._bar_clock.bounds_for_chunk(self.idx, self.params.bars_per_chunk)
            if end > self._spool_written:
                break  # need more audio
            loop = self._spool[start:end]
            # Loudness match to reference loop (optional)
            if self.params.ref_loop is not None and self.params.loudness_mode != "none":
                ref = self.params.ref_loop.as_stereo().resample(self.params.target_sr)
                wav = au.Waveform(loop.copy(), int(self.params.target_sr))
                matched, _ = match_loudness_to_reference(ref, wav, method=self.params.loudness_mode, headroom_db=self.params.headroom_db)
                loop = matched.samples
            audio_b64, total_samples, channels = wav_bytes_base64(loop, int(self.params.target_sr))
            meta = {
                "bpm": float(self.params.bpm),
                "bars": int(self.params.bars_per_chunk),
                "beats_per_bar": int(self.params.beats_per_bar),
                "sample_rate": int(self.params.target_sr),
                "channels": int(channels),
                "total_samples": int(total_samples),
                "seconds_per_bar": self._bar_clock.seconds_per_bar(),
                "loop_duration_seconds": self.params.bars_per_chunk * self._bar_clock.seconds_per_bar(),
                "guidance_weight": float(self.params.guidance_weight),
                "temperature": float(self.params.temperature),
                "topk": int(self.params.topk),
            }
            chunk = JamChunk(index=self.idx, audio_base64=audio_b64, metadata=meta)
            with self._cv:
                self._outbox[self.idx] = chunk
                self._cv.notify_all()
            self.idx += 1
            # If a reseed is queued, install it *right after* we finish a chunk
            with self._lock:
                # Prefer seamless token splice when available
                if self._pending_token_splice is not None:
                    spliced = self._coerce_tokens(self._pending_token_splice["tokens"])
                    try:
                        # inplace update (no reset)
                        self.state.context_tokens = spliced
                        self._pending_token_splice = None
                    except Exception:
                        # fallback: full reseed using spliced tokens
                        new_state = self.mrt.init_state()
                        new_state.context_tokens = spliced
                        self.state = new_state
                        self._model_stream = None
                        self._pending_token_splice = None
                elif self._pending_reseed is not None:
                    ctx = self._coerce_tokens(self._pending_reseed["ctx"])
                    new_state = self.mrt.init_state()
                    new_state.context_tokens = ctx
                    self.state = new_state
                    self._model_stream = None
                    self._pending_reseed = None
    # ---------- main loop ----------
    def run(self):
        # generate until stopped
        while not self._stop_event.is_set():
            # throttle generation if we are far ahead
            if not self._should_generate_next_chunk():
                # still try to emit if spool already has enough
                self._emit_ready()
                time.sleep(0.01)
                continue
            # generate next model chunk
            # snapshot current style vector under lock for this step
            with self._lock:
                style_vec = self.params.style_vec
            wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec)
            # append and spool
            self._append_model_chunk_and_spool(wav)
            # try emitting zero or more chunks if available
            self._emit_ready()
        # finalize resampler (flush) — not strictly necessary here
        tail = self._rs.process(np.zeros((0,2), np.float32), final=True)
        if tail.size:
            self._spool = np.concatenate([self._spool, tail], axis=0)
            self._spool_written += tail.shape[0]
        # one last emit attempt
        self._emit_ready()
 | 
