from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import FileResponse, HTMLResponse from pydantic import BaseModel from typing import List, Dict, Any, Optional from datetime import datetime import uvicorn import os from pathlib import Path import json import logging from contextlib import asynccontextmanager # Import the analyzer from analyze_data_quality import DataQualityAnalyzer # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Global state analyzer = None last_analysis_time = None analysis_results = None @asynccontextmanager async def lifespan(app: FastAPI): # Startup global analyzer try: analyzer = DataQualityAnalyzer() logger.info("DataQualityAnalyzer initialized successfully") except Exception as e: logger.error(f"Error initializing analyzer: {str(e)}") yield # Shutdown logger.info("Shutting down analysis API") app = FastAPI( title="Synthex Medical Text Analysis API", description=""" API for analyzing medical text data quality. This API provides endpoints for: - Running data quality analysis - Checking analysis status - Accessing generated plots - Listing available datasets """, version="1.0.0", lifespan=lifespan ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class AnalysisResponse(BaseModel): summary: Dict[str, Any] datasets: Dict[str, Dict[str, Any]] plots_available: List[str] timestamp: str class StatusResponse(BaseModel): last_analysis: Optional[str] summary: Optional[Dict[str, Any]] is_analyzed: bool @app.get("/", response_class=HTMLResponse) async def root(): """API documentation and status page""" return """ Synthex Medical Text Analysis API

Synthex Medical Text Analysis API

API for analyzing medical text data quality

Available Endpoints

API Documentation

For detailed API documentation, visit:

Status

API is running and ready to process requests.

""" @app.post("/analyze", response_model=AnalysisResponse) async def analyze_data(): """Run full data analysis and generate reports""" global analyzer, last_analysis_time, analysis_results if analyzer is None: try: analyzer = DataQualityAnalyzer() except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to initialize analyzer: {str(e)}") try: # Run analysis analyzer.analyze_all_datasets() report = analyzer.generate_report() analyzer.plot_metrics() # Get list of generated plots plots_dir = analyzer.data_dir.parent / "reports" / "plots" plots_available = [f.name for f in plots_dir.glob("*.png")] # Update global state last_analysis_time = datetime.now().isoformat() analysis_results = report return AnalysisResponse( summary=report["summary"], datasets=report["datasets"], plots_available=plots_available, timestamp=last_analysis_time ) except Exception as e: raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") @app.get("/analysis/status", response_model=StatusResponse) async def get_analysis_status(): """Get the status of the last analysis run""" if last_analysis_time is None: return StatusResponse( last_analysis=None, summary=None, is_analyzed=False ) return StatusResponse( last_analysis=last_analysis_time, summary=analysis_results["summary"] if analysis_results else None, is_analyzed=True ) @app.get("/plots/{plot_name}") async def get_plot(plot_name: str): """Get a specific plot by name""" plots_dir = Path("data/reports/plots") plot_path = plots_dir / plot_name if not plot_path.exists(): raise HTTPException(status_code=404, detail=f"Plot {plot_name} not found") return FileResponse(plot_path) @app.get("/datasets") async def get_datasets(): """List all available datasets for analysis""" if analyzer is None: try: analyzer = DataQualityAnalyzer() except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to initialize analyzer: {str(e)}") try: datasets = [] for file_path in analyzer.data_dir.glob("*.json"): datasets.append({ "name": file_path.stem, "path": str(file_path), "size": file_path.stat().st_size }) return {"datasets": datasets} except Exception as e: raise HTTPException(status_code=500, detail=f"Failed to list datasets: {str(e)}") if __name__ == "__main__": uvicorn.run("analysis_api:app", host="0.0.0.0", port=8001, reload=True)