"""
Synthex Medical Text Generator - MVP Streamlit App
Deploy this on Hugging Face Spaces for free hosting
"""
import streamlit as st
import json
import time
from datetime import datetime
import pandas as pd
import os
import sys
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add src directory to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# Import the medical generator
from src.generation.medical_generator import MedicalTextGenerator, DEFAULT_GEMINI_API_KEY
# Page config
st.set_page_config(
page_title="Synthex Medical Text Generator",
page_icon="🏥",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
""", unsafe_allow_html=True)
# Initialize session state
if 'generated_records' not in st.session_state:
st.session_state.generated_records = []
if 'total_generated' not in st.session_state:
st.session_state.total_generated = 0
if 'generator' not in st.session_state:
st.session_state.generator = None
# Header
st.markdown('
🏥 Synthex Medical Text Generator
', unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("⚙️ Configuration")
# API Key input (pre-filled with environment variable if available)
gemini_api_key = st.text_input(
"Gemini API Key",
value=os.getenv('GEMINI_API_KEY', ''),
type="password",
help="Enter your Google Gemini API key for better generation quality"
)
# Record type selection
record_type = st.selectbox(
"Select Record Type",
["clinical_note", "discharge_summary", "lab_report", "prescription", "patient_intake"],
format_func=lambda x: x.replace("_", " ").title()
)
# Quantity
quantity = st.slider("Number of Records", 1, 20, 5)
# Generation method
use_gemini = st.checkbox(
"Use Gemini API",
value=bool(gemini_api_key), # Only default to True if API key is available
help="Uses Google Gemini API for better quality generation"
)
# Advanced options
with st.expander("Advanced Options"):
include_metadata = st.checkbox("Include Metadata", value=True)
export_format = st.selectbox("Export Format", ["JSON", "CSV", "TXT"])
# Main content
col1, col2 = st.columns([2, 1])
with col1:
st.header("📝 Generate Medical Records")
# Generation button
if st.button("🚀 Generate Records", type="primary", use_container_width=True):
# Initialize generator if not already done
if st.session_state.generator is None:
try:
with st.spinner("Initializing medical text generator..."):
st.session_state.generator = MedicalTextGenerator(gemini_api_key=gemini_api_key)
except Exception as e:
st.error(f"Error initializing generator: {str(e)}")
st.stop()
# Generate records
progress_bar = st.progress(0)
status_text = st.empty()
generated_records = []
for i in range(quantity):
status_text.text(f"Generating record {i+1} of {quantity}...")
progress_bar.progress((i + 1) / quantity)
try:
record = st.session_state.generator.generate_record(record_type, use_gemini=use_gemini)
generated_records.append(record)
# Rate limiting
if use_gemini:
time.sleep(1)
except Exception as e:
logger.error(f"Failed to generate record {i+1}: {str(e)}")
st.error(f"Failed to generate record {i+1}: {str(e)}")
continue
# Update session state
if generated_records:
st.session_state.generated_records.extend(generated_records)
st.session_state.total_generated += len(generated_records)
status_text.text("✅ Generation complete!")
progress_bar.progress(1.0)
st.success(f"Successfully generated {len(generated_records)} medical records!")
# Display generated records
if st.session_state.generated_records:
st.header("📋 Generated Records")
# Filters
col_filter1, col_filter2 = st.columns(2)
with col_filter1:
filter_type = st.selectbox(
"Filter by Type",
["All"] + list(set([r['type'] for r in st.session_state.generated_records]))
)
with col_filter2:
records_per_page = st.selectbox("Records per page", [5, 10, 20, 50])
# Filter records
filtered_records = st.session_state.generated_records
if filter_type != "All":
filtered_records = [r for r in filtered_records if r['type'] == filter_type]
# Pagination
total_records = len(filtered_records)
total_pages = (total_records - 1) // records_per_page + 1
if total_pages > 1:
page = st.selectbox("Page", range(1, total_pages + 1))
start_idx = (page - 1) * records_per_page
end_idx = start_idx + records_per_page
page_records = filtered_records[start_idx:end_idx]
else:
page_records = filtered_records
# Display records
for i, record in enumerate(page_records):
with st.expander(f"Record {record['id']} - {record['type'].replace('_', ' ').title()}"):
if include_metadata:
col_meta1, col_meta2, col_meta3 = st.columns(3)
with col_meta1:
st.metric("Type", record['type'].replace('_', ' ').title())
with col_meta2:
st.metric("Generated", record['timestamp'])
with col_meta3:
st.metric("Source", record['source'])
st.markdown('', unsafe_allow_html=True)
st.text_area("Content", record['text'], height=200, key=f"record_{i}")
st.markdown('
', unsafe_allow_html=True)
with col2:
st.header("📊 Statistics")
# Stats container
st.markdown('', unsafe_allow_html=True)
# Total records
st.metric("Total Records Generated", st.session_state.total_generated)
# Record type distribution
if st.session_state.generated_records:
type_counts = pd.Series([r['type'] for r in st.session_state.generated_records]).value_counts()
st.subheader("Record Type Distribution")
st.bar_chart(type_counts)
# Export options
st.subheader("Export Data")
if st.session_state.generated_records:
if export_format == "JSON":
json_str = json.dumps(st.session_state.generated_records, indent=2)
st.download_button(
"Download JSON",
json_str,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
elif export_format == "CSV":
df = pd.DataFrame(st.session_state.generated_records)
csv = df.to_csv(index=False)
st.download_button(
"Download CSV",
csv,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
elif export_format == "TXT":
txt = "\n\n".join([f"Record {r['id']} ({r['type']}):\n{r['text']}" for r in st.session_state.generated_records])
st.download_button(
"Download TXT",
txt,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
mime="text/plain"
)
st.markdown('
', unsafe_allow_html=True)