syn / src /data_collection /data_collection.py
theaniketgiri's picture
� Initial commit to Hugging Face Space
32519eb
"""
Medical Data Collection Pipeline for Synthex MVP
Collects medical text from free sources for training data
"""
import requests
import pandas as pd
from datasets import load_dataset
import time
import json
from pathlib import Path
from typing import List, Dict, Any
import logging
import sys
from tqdm import tqdm
from bs4 import BeautifulSoup
import re
from datetime import datetime
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler('data_collection.log')
]
)
logger = logging.getLogger(__name__)
class MedicalDataCollector:
def __init__(self, output_dir: str = "data/raw"):
self.output_dir = Path(output_dir)
self.output_dir.mkdir(parents=True, exist_ok=True)
self.stats = {
"total_samples": 0,
"sources": {},
"errors": [],
"start_time": datetime.now()
}
logger.info(f"Initialized MedicalDataCollector with output directory: {self.output_dir}")
def collect_huggingface_datasets(self) -> Dict[str, List]:
"""Collect medical datasets from Hugging Face Hub"""
# Only include datasets that are known to exist and are medical-related
datasets_to_collect = [
"medical_questions_pairs",
"medalpaca/medical_meadow_medical_flashcards",
"gamino/wiki_medical_terms",
("pubmed_qa", "pqa_artificial") # pubmed_qa requires a config
]
collected_data = {}
for dataset_entry in tqdm(datasets_to_collect, desc="Collecting Hugging Face datasets"):
try:
if isinstance(dataset_entry, tuple):
dataset_name, config = dataset_entry
logger.info(f"Loading dataset: {dataset_name} with config: {config}")
dataset = load_dataset(dataset_name, config, split="train")
dataset_key = f"{dataset_name}_{config}"
else:
dataset_name = dataset_entry
logger.info(f"Loading dataset: {dataset_name}")
dataset = load_dataset(dataset_name, split="train")
dataset_key = dataset_name
# Convert to list of dictionaries
data_list = []
for item in dataset:
processed_item = self._process_dataset_item(item)
if processed_item:
data_list.append(processed_item)
if data_list:
collected_data[dataset_key] = data_list
self.stats["sources"][dataset_key] = len(data_list)
self.stats["total_samples"] += len(data_list)
# Save to file
output_file = self.output_dir / f"{dataset_key.replace('/', '_')}.json"
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(data_list, f, indent=2, ensure_ascii=False)
logger.info(f"Saved {len(data_list)} samples from {dataset_key} to {output_file}")
else:
logger.warning(f"No valid data found in dataset: {dataset_key}")
time.sleep(1) # Be respectful to APIs
except Exception as e:
error_msg = f"Failed to load {dataset_entry}: {str(e)}"
logger.error(error_msg, exc_info=True)
self.stats["errors"].append(error_msg)
continue
return collected_data
def collect_pubmed_abstracts(self, queries: List[str] = None, max_results: int = 1000) -> List[Dict]:
"""Collect PubMed abstracts via API"""
if queries is None:
queries = [
"clinical notes",
"medical case reports",
"patient discharge summaries",
"medical laboratory reports",
"medical imaging reports"
]
all_abstracts = []
for query in tqdm(queries, desc="Collecting PubMed abstracts"):
try:
abstracts = self._collect_pubmed_query(query, max_results)
all_abstracts.extend(abstracts)
self.stats["sources"]["pubmed_" + query.replace(" ", "_")] = len(abstracts)
self.stats["total_samples"] += len(abstracts)
except Exception as e:
error_msg = f"Failed to collect PubMed abstracts for {query}: {str(e)}"
logger.error(error_msg)
self.stats["errors"].append(error_msg)
continue
# Save all abstracts
if all_abstracts:
output_file = self.output_dir / "pubmed_abstracts.json"
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(all_abstracts, f, indent=2, ensure_ascii=False)
return all_abstracts
def _collect_pubmed_query(self, query: str, max_results: int) -> List[Dict]:
"""Collect PubMed abstracts for a specific query"""
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/"
search_url = f"{base_url}esearch.fcgi"
search_params = {
"db": "pubmed",
"term": query,
"retmax": max_results,
"retmode": "json",
"sort": "relevance"
}
try:
response = requests.get(search_url, params=search_params)
response.raise_for_status() # Raise exception for bad status codes
search_results = response.json()
# Check rate limits
rate_limit = int(response.headers.get('X-RateLimit-Limit', '3'))
rate_remaining = int(response.headers.get('X-RateLimit-Remaining', '0'))
logger.info(f"Rate limit: {rate_remaining}/{rate_limit} requests remaining")
if rate_remaining <= 1:
logger.warning("Rate limit nearly reached, waiting 60 seconds")
time.sleep(60)
except requests.exceptions.RequestException as e:
logger.error(f"Failed to fetch PubMed search results for query '{query}': {str(e)}")
return []
except json.JSONDecodeError as e:
logger.error(f"Failed to parse PubMed search results for query '{query}': {str(e)}")
return []
if "esearchresult" not in search_results:
logger.warning(f"No search results found for query '{query}'")
return []
id_list = search_results["esearchresult"]["idlist"]
abstracts = []
batch_size = 100
for i in range(0, len(id_list), batch_size):
batch_ids = id_list[i:i+batch_size]
ids_str = ",".join(batch_ids)
fetch_url = f"{base_url}efetch.fcgi"
fetch_params = {
"db": "pubmed",
"id": ids_str,
"retmode": "xml"
}
try:
response = requests.get(fetch_url, params=fetch_params)
response.raise_for_status()
# Check rate limits
rate_limit = int(response.headers.get('X-RateLimit-Limit', '3'))
rate_remaining = int(response.headers.get('X-RateLimit-Remaining', '0'))
logger.info(f"Rate limit: {rate_remaining}/{rate_limit} requests remaining")
if rate_remaining <= 1:
logger.warning("Rate limit nearly reached, waiting 60 seconds")
time.sleep(60)
# Parse XML with proper features
soup = BeautifulSoup(response.text, 'lxml', features="xml")
except requests.exceptions.RequestException as e:
logger.error(f"Failed to fetch PubMed article batch {i//batch_size + 1}: {str(e)}")
continue
except Exception as e:
logger.error(f"Failed to parse PubMed article batch {i//batch_size + 1}: {str(e)}")
continue
for article in soup.find_all('PubmedArticle'):
try:
abstract = article.find('Abstract')
if abstract:
abstract_text = abstract.get_text().strip()
if len(abstract_text) > 100: # Filter out very short abstracts
title = article.find('ArticleTitle')
if not title:
continue
title_text = title.get_text().strip()
pub_date = article.find('PubDate')
year = "Unknown"
if pub_date and pub_date.find('Year'):
year = pub_date.find('Year').get_text().strip()
abstracts.append({
"title": title_text,
"abstract": abstract_text,
"year": year,
"source": "pubmed",
"query": query
})
except Exception as e:
logger.debug(f"Failed to process article in batch {i//batch_size + 1}: {str(e)}")
continue
# Always wait between batches to respect rate limits
time.sleep(1)
logger.info(f"Collected {len(abstracts)} abstracts for query '{query}'")
return abstracts
def create_training_dataset(self) -> pd.DataFrame:
"""Combine all collected data into training dataset"""
all_texts = []
# Load all collected datasets
for json_file in tqdm(list(self.output_dir.glob("*.json")), desc="Processing collected data"):
try:
with open(json_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract text content
for item in data:
text_content = self._extract_text_content(item)
if text_content:
processed_text = self._clean_text(text_content)
if processed_text:
all_texts.append({
"text": processed_text,
"source": json_file.stem,
"length": len(processed_text),
"type": self._determine_text_type(processed_text)
})
except Exception as e:
error_msg = f"Failed to process {json_file}: {str(e)}"
logger.error(error_msg)
self.stats["errors"].append(error_msg)
continue
# Create DataFrame
df = pd.DataFrame(all_texts)
# Basic filtering
df = df[df['length'] > 100] # Remove very short texts
df = df[df['length'] < 5000] # Remove very long texts
# Remove duplicates
df = df.drop_duplicates(subset=['text'])
# Save processed dataset
output_file = self.output_dir.parent / "processed" / "training_data.csv"
output_file.parent.mkdir(exist_ok=True)
df.to_csv(output_file, index=False, encoding='utf-8')
# Update stats
self.stats["final_samples"] = len(df)
self.stats["text_types"] = df['type'].value_counts().to_dict()
logger.info(f"Created training dataset with {len(df)} samples")
return df
def _process_dataset_item(self, item: Dict) -> Dict:
"""Process and validate a dataset item"""
try:
# Extract text content
text = self._extract_text_content(item)
if not text or len(text) < 100:
return None
# Clean text
cleaned_text = self._clean_text(text)
if not cleaned_text:
return None
# Create processed item
processed = {
"text": cleaned_text,
"source": "huggingface",
"type": self._determine_text_type(cleaned_text)
}
# Add metadata if available
for key in ['title', 'question', 'answer', 'instruction']:
if key in item:
processed[key] = str(item[key])
return processed
except Exception:
return None
def _extract_text_content(self, item: Dict) -> str:
"""Extract relevant text content from dataset item"""
# Common text fields in medical datasets
text_fields = ['text', 'content', 'abstract', 'question', 'answer',
'instruction', 'output', 'input', 'context']
for field in text_fields:
if field in item and item[field]:
return str(item[field])
# Fallback: combine multiple fields
combined_text = ""
for key, value in item.items():
if isinstance(value, str) and len(value) > 20:
combined_text += f"{value} "
return combined_text.strip()
def _clean_text(self, text: str) -> str:
"""Clean and normalize text"""
if not text:
return ""
# Remove special characters and normalize whitespace
text = re.sub(r'[^\w\s.,;:!?()-]', ' ', text)
text = re.sub(r'\s+', ' ', text)
# Remove common noise
text = re.sub(r'http\S+', '', text)
text = re.sub(r'www\S+', '', text)
text = re.sub(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', '', text)
return text.strip()
def _determine_text_type(self, text: str) -> str:
"""Determine the type of medical text"""
text = text.lower()
if any(term in text for term in ['discharge', 'summary', 'discharge summary']):
return 'discharge_summary'
elif any(term in text for term in ['lab', 'laboratory', 'test results']):
return 'lab_report'
elif any(term in text for term in ['prescription', 'medication', 'drug']):
return 'prescription'
elif any(term in text for term in ['question', 'answer', 'qa']):
return 'medical_qa'
else:
return 'clinical_note'
def generate_report(self) -> Dict:
"""Generate a report of the data collection process"""
# Convert all datetime objects to strings
for k, v in self.stats.items():
if isinstance(v, datetime):
self.stats[k] = str(v)
self.stats["end_time"] = str(datetime.now())
if isinstance(self.stats["start_time"], datetime):
self.stats["start_time"] = str(self.stats["start_time"])
# Calculate duration as string
try:
start_dt = datetime.fromisoformat(self.stats["start_time"])
end_dt = datetime.fromisoformat(self.stats["end_time"])
self.stats["duration"] = str(end_dt - start_dt)
except Exception:
self.stats["duration"] = "unknown"
report_file = self.output_dir.parent / "reports" / "collection_report.json"
report_file.parent.mkdir(exist_ok=True)
with open(report_file, 'w', encoding='utf-8') as f:
json.dump(self.stats, f, indent=2, ensure_ascii=False)
return self.stats
def main():
"""Run data collection pipeline"""
try:
collector = MedicalDataCollector()
# Collect from Hugging Face
logger.info("Starting Hugging Face dataset collection...")
hf_data = collector.collect_huggingface_datasets()
# Collect from PubMed
logger.info("Starting PubMed collection...")
pubmed_data = collector.collect_pubmed_abstracts()
# Create training dataset
logger.info("Creating training dataset...")
training_df = collector.create_training_dataset()
# Generate report
report = collector.generate_report()
# Print summary
logger.info("\nData Collection Summary:")
logger.info(f"Total samples collected: {report['total_samples']}")
logger.info(f"Final training samples: {report['final_samples']}")
logger.info(f"Duration: {report['duration']}")
logger.info("\nText types distribution:")
for type_, count in report['text_types'].items():
logger.info(f"- {type_}: {count}")
if report['errors']:
logger.warning(f"\nEncountered {len(report['errors'])} errors during collection")
except Exception as e:
logger.error(f"Data collection failed: {str(e)}", exc_info=True)
sys.exit(1)
if __name__ == "__main__":
main()