Spaces:
Sleeping
Sleeping
File size: 8,766 Bytes
32519eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""
Synthex Medical Text Generator - MVP Streamlit App
Deploy this on Hugging Face Spaces for free hosting
"""
import streamlit as st
import json
import time
from datetime import datetime
import pandas as pd
import os
import sys
import logging
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Add src directory to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# Import the medical generator
from src.generation.medical_generator import MedicalTextGenerator, DEFAULT_GEMINI_API_KEY
# Page config
st.set_page_config(
page_title="Synthex Medical Text Generator",
page_icon="π₯",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main-header {
font-size: 3rem;
font-weight: bold;
color: #1f77b4;
text-align: center;
margin-bottom: 2rem;
}
.sub-header {
font-size: 1.5rem;
color: #666;
text-align: center;
margin-bottom: 3rem;
}
.record-container {
background-color: #f8f9fa;
padding: 1rem;
border-radius: 0.5rem;
border-left: 4px solid #1f77b4;
margin: 1rem 0;
}
.stats-container {
background-color: #e8f4fd;
padding: 1rem;
border-radius: 0.5rem;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'generated_records' not in st.session_state:
st.session_state.generated_records = []
if 'total_generated' not in st.session_state:
st.session_state.total_generated = 0
if 'generator' not in st.session_state:
st.session_state.generator = None
# Header
st.markdown('<div class="main-header">π₯ Synthex Medical Text Generator</div>', unsafe_allow_html=True)
st.markdown('<div class="sub-header">Generate synthetic medical records for AI training and testing</div>', unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.header("βοΈ Configuration")
# API Key input (pre-filled with environment variable if available)
gemini_api_key = st.text_input(
"Gemini API Key",
value=os.getenv('GEMINI_API_KEY', ''),
type="password",
help="Enter your Google Gemini API key for better generation quality"
)
# Record type selection
record_type = st.selectbox(
"Select Record Type",
["clinical_note", "discharge_summary", "lab_report", "prescription", "patient_intake"],
format_func=lambda x: x.replace("_", " ").title()
)
# Quantity
quantity = st.slider("Number of Records", 1, 20, 5)
# Generation method
use_gemini = st.checkbox(
"Use Gemini API",
value=bool(gemini_api_key), # Only default to True if API key is available
help="Uses Google Gemini API for better quality generation"
)
# Advanced options
with st.expander("Advanced Options"):
include_metadata = st.checkbox("Include Metadata", value=True)
export_format = st.selectbox("Export Format", ["JSON", "CSV", "TXT"])
# Main content
col1, col2 = st.columns([2, 1])
with col1:
st.header("π Generate Medical Records")
# Generation button
if st.button("π Generate Records", type="primary", use_container_width=True):
# Initialize generator if not already done
if st.session_state.generator is None:
try:
with st.spinner("Initializing medical text generator..."):
st.session_state.generator = MedicalTextGenerator(gemini_api_key=gemini_api_key)
except Exception as e:
st.error(f"Error initializing generator: {str(e)}")
st.stop()
# Generate records
progress_bar = st.progress(0)
status_text = st.empty()
generated_records = []
for i in range(quantity):
status_text.text(f"Generating record {i+1} of {quantity}...")
progress_bar.progress((i + 1) / quantity)
try:
record = st.session_state.generator.generate_record(record_type, use_gemini=use_gemini)
generated_records.append(record)
# Rate limiting
if use_gemini:
time.sleep(1)
except Exception as e:
logger.error(f"Failed to generate record {i+1}: {str(e)}")
st.error(f"Failed to generate record {i+1}: {str(e)}")
continue
# Update session state
if generated_records:
st.session_state.generated_records.extend(generated_records)
st.session_state.total_generated += len(generated_records)
status_text.text("β
Generation complete!")
progress_bar.progress(1.0)
st.success(f"Successfully generated {len(generated_records)} medical records!")
# Display generated records
if st.session_state.generated_records:
st.header("π Generated Records")
# Filters
col_filter1, col_filter2 = st.columns(2)
with col_filter1:
filter_type = st.selectbox(
"Filter by Type",
["All"] + list(set([r['type'] for r in st.session_state.generated_records]))
)
with col_filter2:
records_per_page = st.selectbox("Records per page", [5, 10, 20, 50])
# Filter records
filtered_records = st.session_state.generated_records
if filter_type != "All":
filtered_records = [r for r in filtered_records if r['type'] == filter_type]
# Pagination
total_records = len(filtered_records)
total_pages = (total_records - 1) // records_per_page + 1
if total_pages > 1:
page = st.selectbox("Page", range(1, total_pages + 1))
start_idx = (page - 1) * records_per_page
end_idx = start_idx + records_per_page
page_records = filtered_records[start_idx:end_idx]
else:
page_records = filtered_records
# Display records
for i, record in enumerate(page_records):
with st.expander(f"Record {record['id']} - {record['type'].replace('_', ' ').title()}"):
if include_metadata:
col_meta1, col_meta2, col_meta3 = st.columns(3)
with col_meta1:
st.metric("Type", record['type'].replace('_', ' ').title())
with col_meta2:
st.metric("Generated", record['timestamp'])
with col_meta3:
st.metric("Source", record['source'])
st.markdown('<div class="record-container">', unsafe_allow_html=True)
st.text_area("Content", record['text'], height=200, key=f"record_{i}")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.header("π Statistics")
# Stats container
st.markdown('<div class="stats-container">', unsafe_allow_html=True)
# Total records
st.metric("Total Records Generated", st.session_state.total_generated)
# Record type distribution
if st.session_state.generated_records:
type_counts = pd.Series([r['type'] for r in st.session_state.generated_records]).value_counts()
st.subheader("Record Type Distribution")
st.bar_chart(type_counts)
# Export options
st.subheader("Export Data")
if st.session_state.generated_records:
if export_format == "JSON":
json_str = json.dumps(st.session_state.generated_records, indent=2)
st.download_button(
"Download JSON",
json_str,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
mime="application/json"
)
elif export_format == "CSV":
df = pd.DataFrame(st.session_state.generated_records)
csv = df.to_csv(index=False)
st.download_button(
"Download CSV",
csv,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
elif export_format == "TXT":
txt = "\n\n".join([f"Record {r['id']} ({r['type']}):\n{r['text']}" for r in st.session_state.generated_records])
st.download_button(
"Download TXT",
txt,
file_name=f"medical_records_{datetime.now().strftime('%Y%m%d_%H%M%S')}.txt",
mime="text/plain"
)
st.markdown('</div>', unsafe_allow_html=True) |