import gradio as gr from io import BytesIO import requests import PIL from PIL import Image import numpy as np import os import cvlib as cv import uuid import torch import cv2 from matplotlib import pyplot as plt from torchvision import transforms from diffusers import DiffusionPipeline from share_btn import community_icon_html, loading_icon_html, share_js auth_token = os.environ.get("API_TOKEN") or True device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float32, revision="fp16", use_auth_token=auth_token).to(device) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize((512, 512)), ]) def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, prompt=""): init_image = dict["image"].convert("RGB").resize((512, 512)) _init_image = cv2.cvtColor(np.array(init_image), cv2.COLOR_RGB2BGR) faces, confidences = cv.detect_face(_init_image) cv2.imwrite('data/init_image.jpg',_init_image) for (x,y,p,q) in faces: cv2.rectangle(_init_image,(x,y),(p,q),(255,0,0),2) cv2.imwrite('data/face_detected_image.jpg',_init_image) (x, y, x2, y2) = faces[0] face_mask = np.zeros((512, 512)) face_mask[y:y2, x:x2] = 255 cv2.imwrite('data/face_mask.jpg',face_mask) mask = Image.fromarray(face_mask).convert("RGB") # mask = dict["mask"].convert("RGB").resize((512, 512)) output = pipe(prompt = prompt, image=init_image, mask_image=mask, guidance_scale=8) #7.5 return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(read_content("header.html")) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload source image here").style(height=400) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): prompt = gr.Textbox(placeholder = 'Enter name here (what you want in place of what is erased)', show_label=False, elem_id="input-text") btn = gr.Button("Generate!").style( margin=False, rounded=(False, True, True, False), full_width=False, ) with gr.Column(): image_out = gr.Image(label="Output (Somewhere in the parallel Universe)", elem_id="output-img").style(height=400) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button]) share_button.click(None, [], [], _js=share_js) gr.HTML( """

LICENSE

The model is licensed with a CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license

Biases and content acknowledgment

Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card

""" ) image_blocks.launch()