import gradio as gr from io import BytesIO import requests import PIL from PIL import Image import numpy as np import os import cvlib as cv import uuid import torch import cv2 from matplotlib import pyplot as plt from torchvision import transforms from diffusers import DiffusionPipeline from share_btn import community_icon_html, loading_icon_html, share_js auth_token = os.environ.get("API_TOKEN") or True device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", dtype=torch.float32, revision="fp16", use_auth_token=auth_token).to(device) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), transforms.Resize((512, 512)), ]) def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, prompt=""): init_image = dict["image"].convert("RGB").resize((512, 512)) _init_image = cv2.cvtColor(np.array(init_image), cv2.COLOR_RGB2BGR) faces, confidences = cv.detect_face(_init_image) cv2.imwrite('data/init_image.jpg',_init_image) for (x,y,p,q) in faces: cv2.rectangle(_init_image,(x,y),(p,q),(255,0,0),2) cv2.imwrite('data/face_detected_image.jpg',_init_image) (x, y, x2, y2) = faces[0] face_mask = np.zeros((512, 512)) face_mask[y:y2, x:x2] = 255 cv2.imwrite('data/face_mask.jpg',face_mask) mask = Image.fromarray(face_mask).convert("RGB") # mask = dict["mask"].convert("RGB").resize((512, 512)) output = pipe(prompt = prompt, image=init_image, mask_image=mask, guidance_scale=8) #7.5 return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(read_content("header.html")) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload source image here").style(height=400) with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): prompt = gr.Textbox(placeholder = 'Enter name here (what you want in place of what is erased)', show_label=False, elem_id="input-text") btn = gr.Button("Generate!").style( margin=False, rounded=(False, True, True, False), full_width=False, ) with gr.Column(): image_out = gr.Image(label="Output (Somewhere in the parallel Universe)", elem_id="output-img").style(height=400) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) share_button = gr.Button("Share to community", elem_id="share-btn", visible=False) btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button]) share_button.click(None, [], [], _js=share_js) gr.HTML( """