textgeflecht's picture
Update dashboard/app.py
51f2901 verified
raw
history blame
12 kB
from contextlib import ExitStack
from dataclasses import dataclass
from typing import List
import click
import gradio as gr
import pandas as pd
from parse_results import build_results
@dataclass
class PlotConfig:
x_title: str
y_title: str
title: str
percentiles: List[float] = None
def run(from_results_dir, datasource, port):
css = '''
.summary span {
font-size: 10px;
padding-top:0;
padding-bottom:0;
}
'''
summary_desc = '''
## Summary
This table shows the average of the metrics for each model and QPS rate.
The metrics are:
* Inter token latency: Time to generate a new output token for each user querying the system.
It translates as the “speed” perceived by the end-user. We aim for at least 300 words per minute (average reading speed), so ITL<150ms
* Time to First Token: Time the user has to wait before seeing the first token of its answer.
Lower waiting time are essential for real-time interactions, less so for offline workloads.
* End-to-end latency: The overall time the system took to generate the full response to the user.
* Throughput: The number of tokens per second the system can generate across all requests
* Successful requests: The number of requests the system was able to honor in the benchmark timeframe
* Error rate: The percentage of requests that ended up in error, as the system could not process them in time or failed to process them.
'''
df_bench = pd.DataFrame()
line_plots_bench = []
column_mappings = {'inter_token_latency_ms_p90': 'ITL P90 (ms)', 'time_to_first_token_ms_p90': 'TTFT P90 (ms)',
'e2e_latency_ms_p90': 'E2E P90 (ms)', 'token_throughput_secs': 'Throughput (tokens/s)',
'successful_requests': 'Successful requests', 'error_rate': 'Error rate (%)', 'model': 'Model',
'rate': 'QPS', 'run_id': 'Run ID'}
default_df = pd.DataFrame.from_dict(
{"rate": [1, 2], "inter_token_latency_ms_p90": [10, 20],
"version": ["default", "default"],
"model": ["default", "default"]})
def load_demo(model_bench, percentiles):
return update_bench(model_bench, percentiles)
def update_bench(model, percentiles):
res = []
for plot in line_plots_bench:
if plot['config'].percentiles:
k = plot['metric'] + '_' + str(percentiles)
df_bench[plot['metric']] = df_bench[k] if k in df_bench.columns else 0
res.append(df_bench[(df_bench['model'] == model)])
return res + [summary_table()]
def summary_table() -> pd.DataFrame:
data = df_bench.groupby(['model', 'run_id', 'rate']).agg(
{'inter_token_latency_ms_p90': 'mean', 'time_to_first_token_ms_p90': 'mean',
'e2e_latency_ms_p90': 'mean', 'token_throughput_secs': 'mean',
'successful_requests': 'mean', 'error_rate': 'mean'}).reset_index()
data = data[
['run_id', 'model', 'rate', 'inter_token_latency_ms_p90', 'time_to_first_token_ms_p90',
'e2e_latency_ms_p90',
'token_throughput_secs']]
#for metric in ['inter_token_latency_ms_p90', 'time_to_first_token_ms_p90', 'e2e_latency_ms_p90',
# 'token_throughput_secs']:
# data[metric] = data[metric].apply(lambda x: f"{x:.2f}")
data = data.rename(
columns=column_mappings)
# This is the raw data with correct dtypes for sorting
raw_data_for_sorting = data.copy()
# Define columns that should be numeric for sorting and have specific formatting
# These names must match the column names *after* renaming by column_mappings
numeric_cols_to_ensure = [
'ITL P90 (ms)', 'TTFT P90 (ms)', 'E2E P90 (ms)',
'Throughput (tokens/s)', 'QPS'
]
for col in numeric_cols_to_ensure:
if col in raw_data_for_sorting.columns:
# Convert column to numeric, coercing errors to NaN
# NaN values will be handled by the formatter's try-except or display as "nan"
raw_data_for_sorting[col] = pd.to_numeric(raw_data_for_sorting[col], errors='coerce')
# else:
# Optionally, log a warning if a column expected to be numeric is missing
# print(f"Warning: Column '{col}' not found for numeric conversion in summary_table.")
headers = raw_data_for_sorting.columns.tolist()
# Formatter for display purposes
formatter = {
'ITL P90 (ms)': "{:.2f}",
'TTFT P90 (ms)': "{:.2f}",
'E2E P90 (ms)': "{:.2f}",
'Throughput (tokens/s)': "{:.2f}",
'QPS': "{:.0f}"
}
# Create the display_value array (list of lists)
display_values_list = []
for _, row in raw_data_for_sorting.iterrows():
display_row = []
for col_name in headers:
val = row[col_name]
if col_name in formatter:
try:
display_row.append(formatter[col_name].format(val))
except (ValueError, TypeError): # Fallback for any unexpected non-numeric in formatted columns
display_row.append(str(val))
else:
display_row.append(str(val)) # Default string conversion for other columns
display_values_list.append(display_row)
# Create a styling array (list of lists for CSS). Empty strings if no specific CSS.
# Corrected the extra parenthesis at the end of this line
styling_array = [["" for _ in headers] for _ in range(len(raw_data_for_sorting))]
return {
# Convert the DataFrame (with corrected numeric dtypes) to a list of lists for the "data" field
"data": raw_data_for_sorting.values.tolist(),
"headers": headers,
"metadata": {
"display_value": display_values_list,
"styling": styling_array, # Optional: for cell-specific CSS
},
}
def load_bench_results(source) -> pd.DataFrame:
data = pd.read_parquet(source)
# remove warmup and throughput
data = data[(data['id'] != 'warmup') & (data['id'] != 'throughput')]
# only keep constant rate
data = data[data['executor_type'] == 'ConstantArrivalRate']
return data
def select_region(selection: gr.SelectData, model):
min_w, max_w = selection.index
data = df_bench[(df_bench['model'] == model) & (df_bench['rate'] >= min_w) & (
df_bench['rate'] <= max_w)]
res = []
for plot in line_plots_bench:
# find the y values for the selected region
metric = plot["metric"]
y_min = data[metric].min()
y_max = data[metric].max()
res.append(gr.LinePlot(x_lim=[min_w, max_w], y_lim=[y_min, y_max]))
return res
def reset_region():
res = []
for _ in line_plots_bench:
res.append(gr.LinePlot(x_lim=None, y_lim=None))
return res
def load_datasource(datasource, fn):
if datasource.startswith('file://'):
return fn(datasource)
elif datasource.startswith('s3://'):
return fn(datasource)
else:
raise ValueError(f"Unknown datasource: {datasource}")
if from_results_dir is not None:
build_results(from_results_dir, 'benchmarks.parquet', None)
# Load data
df_bench = load_datasource(datasource, load_bench_results)
# Define metrics
metrics = {
"inter_token_latency_ms": PlotConfig(title="Inter Token Latency (lower is better)", x_title="QPS",
y_title="Time (ms)", percentiles=[0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]),
"time_to_first_token_ms": PlotConfig(title="TTFT (lower is better)", x_title="QPS",
y_title="Time (ms)", percentiles=[0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]),
"e2e_latency_ms": PlotConfig(title="End to End Latency (lower is better)", x_title="QPS",
y_title="Time (ms)", percentiles=[0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99]),
"token_throughput_secs": PlotConfig(title="Request Output Throughput (higher is better)", x_title="QPS",
y_title="Tokens/s"),
"successful_requests": PlotConfig(title="Successful requests (higher is better)", x_title="QPS",
y_title="Count"),
"error_rate": PlotConfig(title="Error rate", x_title="QPS", y_title="%"),
"prompt_tokens": PlotConfig(title="Prompt tokens", x_title="QPS", y_title="Count"),
"decoded_tokens": PlotConfig(title="Decoded tokens", x_title="QPS", y_title="Count")
}
models = df_bench["model"].unique()
run_ids = df_bench["run_id"].unique()
# get all available percentiles
percentiles = set()
for k, v in metrics.items():
if v.percentiles:
percentiles.update(v.percentiles)
percentiles = map(lambda p: f'p{int(float(p) * 100)}', percentiles)
percentiles = sorted(list(percentiles))
percentiles.append('avg')
with gr.Blocks(css=css, title="Inference Benchmarker") as demo:
with gr.Row():
gr.Markdown("# Inference-benchmarker 🤗\n## Benchmarks results")
with gr.Row():
gr.Markdown(summary_desc)
with gr.Row():
table = gr.DataFrame(
pd.DataFrame(),
elem_classes=["summary"],
)
with gr.Row():
details_desc = gr.Markdown("## Details")
with gr.Row():
model = gr.Dropdown(list(models), label="Select model", value=models[0])
with gr.Row():
percentiles_bench = gr.Radio(percentiles, label="", value="avg")
i = 0
with ExitStack() as stack:
for k, v in metrics.items():
if i % 2 == 0:
stack.close()
gs = stack.enter_context(gr.Row())
line_plots_bench.append(
{"component": gr.LinePlot(default_df, label=f'{v.title}', x="rate", y=k,
y_title=v.y_title, x_title=v.x_title,
color="run_id"
),
"model": model.value,
"metric": k,
"config": v
},
)
i += 1
for component in [model, percentiles_bench]:
component.change(update_bench, [model, percentiles_bench],
[item["component"] for item in line_plots_bench] + [table])
gr.on([plot["component"].select for plot in line_plots_bench], select_region, [model],
outputs=[item["component"] for item in line_plots_bench])
gr.on([plot["component"].double_click for plot in line_plots_bench], reset_region, None,
outputs=[item["component"] for item in line_plots_bench])
demo.load(load_demo, [model, percentiles_bench],
[item["component"] for item in line_plots_bench] + [table])
demo.launch(server_port=port, server_name="0.0.0.0")
@click.command()
@click.option('--from-results-dir', default=None, help='Load inference-benchmarker results from a directory')
@click.option('--datasource', default='file://benchmarks.parquet', help='Load a Parquet file already generated')
@click.option('--port', default=7860, help='Port to run the dashboard')
def main(from_results_dir, datasource, port):
run(from_results_dir, datasource, port)
if __name__ == '__main__':
main(auto_envvar_prefix='DASHBOARD')