Spaces:
Runtime error
Runtime error
first commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch, torchvision
|
| 2 |
+
from mmcv.ops import get_compiling_cuda_version, get_compiler_version
|
| 3 |
+
import mmpose
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import cv2
|
| 6 |
+
from mmpose.apis import (inference_top_down_pose_model, init_pose_model,
|
| 7 |
+
vis_pose_result, process_mmdet_results)
|
| 8 |
+
from mmdet.apis import inference_detector, init_detector
|
| 9 |
+
|
| 10 |
+
pose_config = '/configs/topdown_heatmap_hrnet_w48_coco_256x192.py'
|
| 11 |
+
pose_checkpoint = '/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
|
| 12 |
+
det_config = '/configs/faster_rcnn_r50_fpn_1x_coco.py'
|
| 13 |
+
det_checkpoint = '/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
|
| 14 |
+
|
| 15 |
+
# initialize pose model
|
| 16 |
+
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu')
|
| 17 |
+
# initialize detector
|
| 18 |
+
det_model = init_detector(det_config, det_checkpoint, device='cpu')
|
| 19 |
+
|
| 20 |
+
def predict(img):
|
| 21 |
+
mmdet_results = inference_detector(det_model, img)
|
| 22 |
+
person_results = process_mmdet_results(mmdet_results, cat_id=1)
|
| 23 |
+
|
| 24 |
+
pose_results, returned_outputs = inference_top_down_pose_model(
|
| 25 |
+
pose_model,
|
| 26 |
+
img,
|
| 27 |
+
person_results,
|
| 28 |
+
bbox_thr=0.3,
|
| 29 |
+
format='xyxy',
|
| 30 |
+
dataset=pose_model.cfg.data.test.type)
|
| 31 |
+
|
| 32 |
+
vis_result = vis_pose_result(
|
| 33 |
+
pose_model,
|
| 34 |
+
img,
|
| 35 |
+
pose_results,
|
| 36 |
+
dataset=pose_model.cfg.data.test.type,
|
| 37 |
+
show=False)
|
| 38 |
+
|
| 39 |
+
#vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5)
|
| 40 |
+
|
| 41 |
+
return vis_result
|
| 42 |
+
|
| 43 |
+
example_list = ['/examples/demo2.png']
|
| 44 |
+
title = "Pose estimation"
|
| 45 |
+
description = "HPE"
|
| 46 |
+
article = "test MMpose"
|
| 47 |
+
|
| 48 |
+
# Create the Gradio demo
|
| 49 |
+
demo = gr.Interface(fn=predict,
|
| 50 |
+
inputs=gr.Image(),
|
| 51 |
+
outputs=[gr.Image(label='Prediction')],
|
| 52 |
+
examples=example_list,
|
| 53 |
+
title=title,
|
| 54 |
+
description=description,
|
| 55 |
+
article=article)
|
| 56 |
+
|
| 57 |
+
# Launch the demo!
|
| 58 |
+
demo.launch(debug=False,
|
| 59 |
+
share=True)
|
configs/faster_rcnn_r50_fpn_1x_coco.py
ADDED
|
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
model = dict(
|
| 2 |
+
type='FasterRCNN',
|
| 3 |
+
backbone=dict(
|
| 4 |
+
type='ResNet',
|
| 5 |
+
depth=50,
|
| 6 |
+
num_stages=4,
|
| 7 |
+
out_indices=(0, 1, 2, 3),
|
| 8 |
+
frozen_stages=1,
|
| 9 |
+
norm_cfg=dict(type='BN', requires_grad=True),
|
| 10 |
+
norm_eval=True,
|
| 11 |
+
style='pytorch',
|
| 12 |
+
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
|
| 13 |
+
neck=dict(
|
| 14 |
+
type='FPN',
|
| 15 |
+
in_channels=[256, 512, 1024, 2048],
|
| 16 |
+
out_channels=256,
|
| 17 |
+
num_outs=5),
|
| 18 |
+
rpn_head=dict(
|
| 19 |
+
type='RPNHead',
|
| 20 |
+
in_channels=256,
|
| 21 |
+
feat_channels=256,
|
| 22 |
+
anchor_generator=dict(
|
| 23 |
+
type='AnchorGenerator',
|
| 24 |
+
scales=[8],
|
| 25 |
+
ratios=[0.5, 1.0, 2.0],
|
| 26 |
+
strides=[4, 8, 16, 32, 64]),
|
| 27 |
+
bbox_coder=dict(
|
| 28 |
+
type='DeltaXYWHBBoxCoder',
|
| 29 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
| 30 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
| 31 |
+
loss_cls=dict(
|
| 32 |
+
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
| 33 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
|
| 34 |
+
roi_head=dict(
|
| 35 |
+
type='StandardRoIHead',
|
| 36 |
+
bbox_roi_extractor=dict(
|
| 37 |
+
type='SingleRoIExtractor',
|
| 38 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
| 39 |
+
out_channels=256,
|
| 40 |
+
featmap_strides=[4, 8, 16, 32]),
|
| 41 |
+
bbox_head=dict(
|
| 42 |
+
type='Shared2FCBBoxHead',
|
| 43 |
+
in_channels=256,
|
| 44 |
+
fc_out_channels=1024,
|
| 45 |
+
roi_feat_size=7,
|
| 46 |
+
num_classes=80,
|
| 47 |
+
bbox_coder=dict(
|
| 48 |
+
type='DeltaXYWHBBoxCoder',
|
| 49 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
| 50 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
| 51 |
+
reg_class_agnostic=False,
|
| 52 |
+
loss_cls=dict(
|
| 53 |
+
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
|
| 54 |
+
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
|
| 55 |
+
train_cfg=dict(
|
| 56 |
+
rpn=dict(
|
| 57 |
+
assigner=dict(
|
| 58 |
+
type='MaxIoUAssigner',
|
| 59 |
+
pos_iou_thr=0.7,
|
| 60 |
+
neg_iou_thr=0.3,
|
| 61 |
+
min_pos_iou=0.3,
|
| 62 |
+
match_low_quality=True,
|
| 63 |
+
ignore_iof_thr=-1),
|
| 64 |
+
sampler=dict(
|
| 65 |
+
type='RandomSampler',
|
| 66 |
+
num=256,
|
| 67 |
+
pos_fraction=0.5,
|
| 68 |
+
neg_pos_ub=-1,
|
| 69 |
+
add_gt_as_proposals=False),
|
| 70 |
+
allowed_border=-1,
|
| 71 |
+
pos_weight=-1,
|
| 72 |
+
debug=False),
|
| 73 |
+
rpn_proposal=dict(
|
| 74 |
+
nms_pre=2000,
|
| 75 |
+
max_per_img=1000,
|
| 76 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 77 |
+
min_bbox_size=0),
|
| 78 |
+
rcnn=dict(
|
| 79 |
+
assigner=dict(
|
| 80 |
+
type='MaxIoUAssigner',
|
| 81 |
+
pos_iou_thr=0.5,
|
| 82 |
+
neg_iou_thr=0.5,
|
| 83 |
+
min_pos_iou=0.5,
|
| 84 |
+
match_low_quality=False,
|
| 85 |
+
ignore_iof_thr=-1),
|
| 86 |
+
sampler=dict(
|
| 87 |
+
type='RandomSampler',
|
| 88 |
+
num=512,
|
| 89 |
+
pos_fraction=0.25,
|
| 90 |
+
neg_pos_ub=-1,
|
| 91 |
+
add_gt_as_proposals=True),
|
| 92 |
+
pos_weight=-1,
|
| 93 |
+
debug=False)),
|
| 94 |
+
test_cfg=dict(
|
| 95 |
+
rpn=dict(
|
| 96 |
+
nms_pre=1000,
|
| 97 |
+
max_per_img=1000,
|
| 98 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
| 99 |
+
min_bbox_size=0),
|
| 100 |
+
rcnn=dict(
|
| 101 |
+
score_thr=0.05,
|
| 102 |
+
nms=dict(type='nms', iou_threshold=0.5),
|
| 103 |
+
max_per_img=100)))
|
| 104 |
+
dataset_type = 'CocoDataset'
|
| 105 |
+
data_root = 'data/coco/'
|
| 106 |
+
img_norm_cfg = dict(
|
| 107 |
+
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
| 108 |
+
train_pipeline = [
|
| 109 |
+
dict(type='LoadImageFromFile'),
|
| 110 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 111 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
| 112 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
| 113 |
+
dict(
|
| 114 |
+
type='Normalize',
|
| 115 |
+
mean=[123.675, 116.28, 103.53],
|
| 116 |
+
std=[58.395, 57.12, 57.375],
|
| 117 |
+
to_rgb=True),
|
| 118 |
+
dict(type='Pad', size_divisor=32),
|
| 119 |
+
dict(type='DefaultFormatBundle'),
|
| 120 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
| 121 |
+
]
|
| 122 |
+
test_pipeline = [
|
| 123 |
+
dict(type='LoadImageFromFile'),
|
| 124 |
+
dict(
|
| 125 |
+
type='MultiScaleFlipAug',
|
| 126 |
+
img_scale=(1333, 800),
|
| 127 |
+
flip=False,
|
| 128 |
+
transforms=[
|
| 129 |
+
dict(type='Resize', keep_ratio=True),
|
| 130 |
+
dict(type='RandomFlip'),
|
| 131 |
+
dict(
|
| 132 |
+
type='Normalize',
|
| 133 |
+
mean=[123.675, 116.28, 103.53],
|
| 134 |
+
std=[58.395, 57.12, 57.375],
|
| 135 |
+
to_rgb=True),
|
| 136 |
+
dict(type='Pad', size_divisor=32),
|
| 137 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 138 |
+
dict(type='Collect', keys=['img'])
|
| 139 |
+
])
|
| 140 |
+
]
|
| 141 |
+
data = dict(
|
| 142 |
+
samples_per_gpu=2,
|
| 143 |
+
workers_per_gpu=2,
|
| 144 |
+
train=dict(
|
| 145 |
+
type='CocoDataset',
|
| 146 |
+
ann_file='data/coco/annotations/instances_train2017.json',
|
| 147 |
+
img_prefix='data/coco/train2017/',
|
| 148 |
+
pipeline=[
|
| 149 |
+
dict(type='LoadImageFromFile'),
|
| 150 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
| 151 |
+
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
|
| 152 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
| 153 |
+
dict(
|
| 154 |
+
type='Normalize',
|
| 155 |
+
mean=[123.675, 116.28, 103.53],
|
| 156 |
+
std=[58.395, 57.12, 57.375],
|
| 157 |
+
to_rgb=True),
|
| 158 |
+
dict(type='Pad', size_divisor=32),
|
| 159 |
+
dict(type='DefaultFormatBundle'),
|
| 160 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
|
| 161 |
+
]),
|
| 162 |
+
val=dict(
|
| 163 |
+
type='CocoDataset',
|
| 164 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
| 165 |
+
img_prefix='data/coco/val2017/',
|
| 166 |
+
pipeline=[
|
| 167 |
+
dict(type='LoadImageFromFile'),
|
| 168 |
+
dict(
|
| 169 |
+
type='MultiScaleFlipAug',
|
| 170 |
+
img_scale=(1333, 800),
|
| 171 |
+
flip=False,
|
| 172 |
+
transforms=[
|
| 173 |
+
dict(type='Resize', keep_ratio=True),
|
| 174 |
+
dict(type='RandomFlip'),
|
| 175 |
+
dict(
|
| 176 |
+
type='Normalize',
|
| 177 |
+
mean=[123.675, 116.28, 103.53],
|
| 178 |
+
std=[58.395, 57.12, 57.375],
|
| 179 |
+
to_rgb=True),
|
| 180 |
+
dict(type='Pad', size_divisor=32),
|
| 181 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 182 |
+
dict(type='Collect', keys=['img'])
|
| 183 |
+
])
|
| 184 |
+
]),
|
| 185 |
+
test=dict(
|
| 186 |
+
type='CocoDataset',
|
| 187 |
+
ann_file='data/coco/annotations/instances_val2017.json',
|
| 188 |
+
img_prefix='data/coco/val2017/',
|
| 189 |
+
pipeline=[
|
| 190 |
+
dict(type='LoadImageFromFile'),
|
| 191 |
+
dict(
|
| 192 |
+
type='MultiScaleFlipAug',
|
| 193 |
+
img_scale=(1333, 800),
|
| 194 |
+
flip=False,
|
| 195 |
+
transforms=[
|
| 196 |
+
dict(type='Resize', keep_ratio=True),
|
| 197 |
+
dict(type='RandomFlip'),
|
| 198 |
+
dict(
|
| 199 |
+
type='Normalize',
|
| 200 |
+
mean=[123.675, 116.28, 103.53],
|
| 201 |
+
std=[58.395, 57.12, 57.375],
|
| 202 |
+
to_rgb=True),
|
| 203 |
+
dict(type='Pad', size_divisor=32),
|
| 204 |
+
dict(type='ImageToTensor', keys=['img']),
|
| 205 |
+
dict(type='Collect', keys=['img'])
|
| 206 |
+
])
|
| 207 |
+
]))
|
| 208 |
+
evaluation = dict(interval=1, metric='bbox')
|
| 209 |
+
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
|
| 210 |
+
optimizer_config = dict(grad_clip=None)
|
| 211 |
+
lr_config = dict(
|
| 212 |
+
policy='step',
|
| 213 |
+
warmup='linear',
|
| 214 |
+
warmup_iters=500,
|
| 215 |
+
warmup_ratio=0.001,
|
| 216 |
+
step=[8, 11])
|
| 217 |
+
runner = dict(type='EpochBasedRunner', max_epochs=12)
|
| 218 |
+
checkpoint_config = dict(interval=1)
|
| 219 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
| 220 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
| 221 |
+
dist_params = dict(backend='nccl')
|
| 222 |
+
log_level = 'INFO'
|
| 223 |
+
load_from = None
|
| 224 |
+
resume_from = None
|
| 225 |
+
workflow = [('train', 1)]
|
| 226 |
+
opencv_num_threads = 0
|
| 227 |
+
mp_start_method = 'fork'
|
| 228 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
configs/topdown_heatmap_hrnet_w48_coco_256x192.py
ADDED
|
@@ -0,0 +1,1129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
checkpoint_config = dict(interval=10)
|
| 2 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
| 3 |
+
log_level = 'INFO'
|
| 4 |
+
load_from = None
|
| 5 |
+
resume_from = None
|
| 6 |
+
dist_params = dict(backend='nccl')
|
| 7 |
+
workflow = [('train', 1)]
|
| 8 |
+
opencv_num_threads = 0
|
| 9 |
+
mp_start_method = 'fork'
|
| 10 |
+
dataset_info = dict(
|
| 11 |
+
dataset_name='coco',
|
| 12 |
+
paper_info=dict(
|
| 13 |
+
author=
|
| 14 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
| 15 |
+
title='Microsoft coco: Common objects in context',
|
| 16 |
+
container='European conference on computer vision',
|
| 17 |
+
year='2014',
|
| 18 |
+
homepage='http://cocodataset.org/'),
|
| 19 |
+
keypoint_info=dict({
|
| 20 |
+
0:
|
| 21 |
+
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''),
|
| 22 |
+
1:
|
| 23 |
+
dict(
|
| 24 |
+
name='left_eye',
|
| 25 |
+
id=1,
|
| 26 |
+
color=[51, 153, 255],
|
| 27 |
+
type='upper',
|
| 28 |
+
swap='right_eye'),
|
| 29 |
+
2:
|
| 30 |
+
dict(
|
| 31 |
+
name='right_eye',
|
| 32 |
+
id=2,
|
| 33 |
+
color=[51, 153, 255],
|
| 34 |
+
type='upper',
|
| 35 |
+
swap='left_eye'),
|
| 36 |
+
3:
|
| 37 |
+
dict(
|
| 38 |
+
name='left_ear',
|
| 39 |
+
id=3,
|
| 40 |
+
color=[51, 153, 255],
|
| 41 |
+
type='upper',
|
| 42 |
+
swap='right_ear'),
|
| 43 |
+
4:
|
| 44 |
+
dict(
|
| 45 |
+
name='right_ear',
|
| 46 |
+
id=4,
|
| 47 |
+
color=[51, 153, 255],
|
| 48 |
+
type='upper',
|
| 49 |
+
swap='left_ear'),
|
| 50 |
+
5:
|
| 51 |
+
dict(
|
| 52 |
+
name='left_shoulder',
|
| 53 |
+
id=5,
|
| 54 |
+
color=[0, 255, 0],
|
| 55 |
+
type='upper',
|
| 56 |
+
swap='right_shoulder'),
|
| 57 |
+
6:
|
| 58 |
+
dict(
|
| 59 |
+
name='right_shoulder',
|
| 60 |
+
id=6,
|
| 61 |
+
color=[255, 128, 0],
|
| 62 |
+
type='upper',
|
| 63 |
+
swap='left_shoulder'),
|
| 64 |
+
7:
|
| 65 |
+
dict(
|
| 66 |
+
name='left_elbow',
|
| 67 |
+
id=7,
|
| 68 |
+
color=[0, 255, 0],
|
| 69 |
+
type='upper',
|
| 70 |
+
swap='right_elbow'),
|
| 71 |
+
8:
|
| 72 |
+
dict(
|
| 73 |
+
name='right_elbow',
|
| 74 |
+
id=8,
|
| 75 |
+
color=[255, 128, 0],
|
| 76 |
+
type='upper',
|
| 77 |
+
swap='left_elbow'),
|
| 78 |
+
9:
|
| 79 |
+
dict(
|
| 80 |
+
name='left_wrist',
|
| 81 |
+
id=9,
|
| 82 |
+
color=[0, 255, 0],
|
| 83 |
+
type='upper',
|
| 84 |
+
swap='right_wrist'),
|
| 85 |
+
10:
|
| 86 |
+
dict(
|
| 87 |
+
name='right_wrist',
|
| 88 |
+
id=10,
|
| 89 |
+
color=[255, 128, 0],
|
| 90 |
+
type='upper',
|
| 91 |
+
swap='left_wrist'),
|
| 92 |
+
11:
|
| 93 |
+
dict(
|
| 94 |
+
name='left_hip',
|
| 95 |
+
id=11,
|
| 96 |
+
color=[0, 255, 0],
|
| 97 |
+
type='lower',
|
| 98 |
+
swap='right_hip'),
|
| 99 |
+
12:
|
| 100 |
+
dict(
|
| 101 |
+
name='right_hip',
|
| 102 |
+
id=12,
|
| 103 |
+
color=[255, 128, 0],
|
| 104 |
+
type='lower',
|
| 105 |
+
swap='left_hip'),
|
| 106 |
+
13:
|
| 107 |
+
dict(
|
| 108 |
+
name='left_knee',
|
| 109 |
+
id=13,
|
| 110 |
+
color=[0, 255, 0],
|
| 111 |
+
type='lower',
|
| 112 |
+
swap='right_knee'),
|
| 113 |
+
14:
|
| 114 |
+
dict(
|
| 115 |
+
name='right_knee',
|
| 116 |
+
id=14,
|
| 117 |
+
color=[255, 128, 0],
|
| 118 |
+
type='lower',
|
| 119 |
+
swap='left_knee'),
|
| 120 |
+
15:
|
| 121 |
+
dict(
|
| 122 |
+
name='left_ankle',
|
| 123 |
+
id=15,
|
| 124 |
+
color=[0, 255, 0],
|
| 125 |
+
type='lower',
|
| 126 |
+
swap='right_ankle'),
|
| 127 |
+
16:
|
| 128 |
+
dict(
|
| 129 |
+
name='right_ankle',
|
| 130 |
+
id=16,
|
| 131 |
+
color=[255, 128, 0],
|
| 132 |
+
type='lower',
|
| 133 |
+
swap='left_ankle')
|
| 134 |
+
}),
|
| 135 |
+
skeleton_info=dict({
|
| 136 |
+
0:
|
| 137 |
+
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
| 138 |
+
1:
|
| 139 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
| 140 |
+
2:
|
| 141 |
+
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]),
|
| 142 |
+
3:
|
| 143 |
+
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]),
|
| 144 |
+
4:
|
| 145 |
+
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]),
|
| 146 |
+
5:
|
| 147 |
+
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]),
|
| 148 |
+
6:
|
| 149 |
+
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]),
|
| 150 |
+
7:
|
| 151 |
+
dict(
|
| 152 |
+
link=('left_shoulder', 'right_shoulder'),
|
| 153 |
+
id=7,
|
| 154 |
+
color=[51, 153, 255]),
|
| 155 |
+
8:
|
| 156 |
+
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]),
|
| 157 |
+
9:
|
| 158 |
+
dict(
|
| 159 |
+
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]),
|
| 160 |
+
10:
|
| 161 |
+
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]),
|
| 162 |
+
11:
|
| 163 |
+
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]),
|
| 164 |
+
12:
|
| 165 |
+
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]),
|
| 166 |
+
13:
|
| 167 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
| 168 |
+
14:
|
| 169 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
| 170 |
+
15:
|
| 171 |
+
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]),
|
| 172 |
+
16:
|
| 173 |
+
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]),
|
| 174 |
+
17:
|
| 175 |
+
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]),
|
| 176 |
+
18:
|
| 177 |
+
dict(
|
| 178 |
+
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255])
|
| 179 |
+
}),
|
| 180 |
+
joint_weights=[
|
| 181 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2,
|
| 182 |
+
1.2, 1.5, 1.5
|
| 183 |
+
],
|
| 184 |
+
sigmas=[
|
| 185 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062,
|
| 186 |
+
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
| 187 |
+
])
|
| 188 |
+
evaluation = dict(interval=10, metric='mAP', save_best='AP')
|
| 189 |
+
optimizer = dict(type='Adam', lr=0.0005)
|
| 190 |
+
optimizer_config = dict(grad_clip=None)
|
| 191 |
+
lr_config = dict(
|
| 192 |
+
policy='step',
|
| 193 |
+
warmup='linear',
|
| 194 |
+
warmup_iters=500,
|
| 195 |
+
warmup_ratio=0.001,
|
| 196 |
+
step=[170, 200])
|
| 197 |
+
total_epochs = 210
|
| 198 |
+
channel_cfg = dict(
|
| 199 |
+
num_output_channels=17,
|
| 200 |
+
dataset_joints=17,
|
| 201 |
+
dataset_channel=[[
|
| 202 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 203 |
+
]],
|
| 204 |
+
inference_channel=[
|
| 205 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 206 |
+
])
|
| 207 |
+
model = dict(
|
| 208 |
+
type='TopDown',
|
| 209 |
+
pretrained=
|
| 210 |
+
'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth',
|
| 211 |
+
backbone=dict(
|
| 212 |
+
type='HRNet',
|
| 213 |
+
in_channels=3,
|
| 214 |
+
extra=dict(
|
| 215 |
+
stage1=dict(
|
| 216 |
+
num_modules=1,
|
| 217 |
+
num_branches=1,
|
| 218 |
+
block='BOTTLENECK',
|
| 219 |
+
num_blocks=(4, ),
|
| 220 |
+
num_channels=(64, )),
|
| 221 |
+
stage2=dict(
|
| 222 |
+
num_modules=1,
|
| 223 |
+
num_branches=2,
|
| 224 |
+
block='BASIC',
|
| 225 |
+
num_blocks=(4, 4),
|
| 226 |
+
num_channels=(48, 96)),
|
| 227 |
+
stage3=dict(
|
| 228 |
+
num_modules=4,
|
| 229 |
+
num_branches=3,
|
| 230 |
+
block='BASIC',
|
| 231 |
+
num_blocks=(4, 4, 4),
|
| 232 |
+
num_channels=(48, 96, 192)),
|
| 233 |
+
stage4=dict(
|
| 234 |
+
num_modules=3,
|
| 235 |
+
num_branches=4,
|
| 236 |
+
block='BASIC',
|
| 237 |
+
num_blocks=(4, 4, 4, 4),
|
| 238 |
+
num_channels=(48, 96, 192, 384)))),
|
| 239 |
+
keypoint_head=dict(
|
| 240 |
+
type='TopdownHeatmapSimpleHead',
|
| 241 |
+
in_channels=48,
|
| 242 |
+
out_channels=17,
|
| 243 |
+
num_deconv_layers=0,
|
| 244 |
+
extra=dict(final_conv_kernel=1),
|
| 245 |
+
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
|
| 246 |
+
train_cfg=dict(),
|
| 247 |
+
test_cfg=dict(
|
| 248 |
+
flip_test=True,
|
| 249 |
+
post_process='default',
|
| 250 |
+
shift_heatmap=True,
|
| 251 |
+
modulate_kernel=11))
|
| 252 |
+
data_cfg = dict(
|
| 253 |
+
image_size=[192, 256],
|
| 254 |
+
heatmap_size=[48, 64],
|
| 255 |
+
num_output_channels=17,
|
| 256 |
+
num_joints=17,
|
| 257 |
+
dataset_channel=[[
|
| 258 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 259 |
+
]],
|
| 260 |
+
inference_channel=[
|
| 261 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 262 |
+
],
|
| 263 |
+
soft_nms=False,
|
| 264 |
+
nms_thr=1.0,
|
| 265 |
+
oks_thr=0.9,
|
| 266 |
+
vis_thr=0.2,
|
| 267 |
+
use_gt_bbox=False,
|
| 268 |
+
det_bbox_thr=0.0,
|
| 269 |
+
bbox_file=
|
| 270 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
| 271 |
+
)
|
| 272 |
+
train_pipeline = [
|
| 273 |
+
dict(type='LoadImageFromFile'),
|
| 274 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
| 275 |
+
dict(
|
| 276 |
+
type='TopDownHalfBodyTransform',
|
| 277 |
+
num_joints_half_body=8,
|
| 278 |
+
prob_half_body=0.3),
|
| 279 |
+
dict(
|
| 280 |
+
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
|
| 281 |
+
dict(type='TopDownAffine'),
|
| 282 |
+
dict(type='ToTensor'),
|
| 283 |
+
dict(
|
| 284 |
+
type='NormalizeTensor',
|
| 285 |
+
mean=[0.485, 0.456, 0.406],
|
| 286 |
+
std=[0.229, 0.224, 0.225]),
|
| 287 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
| 288 |
+
dict(
|
| 289 |
+
type='Collect',
|
| 290 |
+
keys=['img', 'target', 'target_weight'],
|
| 291 |
+
meta_keys=[
|
| 292 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
|
| 293 |
+
'rotation', 'bbox_score', 'flip_pairs'
|
| 294 |
+
])
|
| 295 |
+
]
|
| 296 |
+
val_pipeline = [
|
| 297 |
+
dict(type='LoadImageFromFile'),
|
| 298 |
+
dict(type='TopDownAffine'),
|
| 299 |
+
dict(type='ToTensor'),
|
| 300 |
+
dict(
|
| 301 |
+
type='NormalizeTensor',
|
| 302 |
+
mean=[0.485, 0.456, 0.406],
|
| 303 |
+
std=[0.229, 0.224, 0.225]),
|
| 304 |
+
dict(
|
| 305 |
+
type='Collect',
|
| 306 |
+
keys=['img'],
|
| 307 |
+
meta_keys=[
|
| 308 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
| 309 |
+
'flip_pairs'
|
| 310 |
+
])
|
| 311 |
+
]
|
| 312 |
+
test_pipeline = [
|
| 313 |
+
dict(type='LoadImageFromFile'),
|
| 314 |
+
dict(type='TopDownAffine'),
|
| 315 |
+
dict(type='ToTensor'),
|
| 316 |
+
dict(
|
| 317 |
+
type='NormalizeTensor',
|
| 318 |
+
mean=[0.485, 0.456, 0.406],
|
| 319 |
+
std=[0.229, 0.224, 0.225]),
|
| 320 |
+
dict(
|
| 321 |
+
type='Collect',
|
| 322 |
+
keys=['img'],
|
| 323 |
+
meta_keys=[
|
| 324 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
| 325 |
+
'flip_pairs'
|
| 326 |
+
])
|
| 327 |
+
]
|
| 328 |
+
data_root = 'data/coco'
|
| 329 |
+
data = dict(
|
| 330 |
+
samples_per_gpu=32,
|
| 331 |
+
workers_per_gpu=2,
|
| 332 |
+
val_dataloader=dict(samples_per_gpu=32),
|
| 333 |
+
test_dataloader=dict(samples_per_gpu=32),
|
| 334 |
+
train=dict(
|
| 335 |
+
type='TopDownCocoDataset',
|
| 336 |
+
ann_file='data/coco/annotations/person_keypoints_train2017.json',
|
| 337 |
+
img_prefix='data/coco/train2017/',
|
| 338 |
+
data_cfg=dict(
|
| 339 |
+
image_size=[192, 256],
|
| 340 |
+
heatmap_size=[48, 64],
|
| 341 |
+
num_output_channels=17,
|
| 342 |
+
num_joints=17,
|
| 343 |
+
dataset_channel=[[
|
| 344 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 345 |
+
]],
|
| 346 |
+
inference_channel=[
|
| 347 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 348 |
+
],
|
| 349 |
+
soft_nms=False,
|
| 350 |
+
nms_thr=1.0,
|
| 351 |
+
oks_thr=0.9,
|
| 352 |
+
vis_thr=0.2,
|
| 353 |
+
use_gt_bbox=False,
|
| 354 |
+
det_bbox_thr=0.0,
|
| 355 |
+
bbox_file=
|
| 356 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
| 357 |
+
),
|
| 358 |
+
pipeline=[
|
| 359 |
+
dict(type='LoadImageFromFile'),
|
| 360 |
+
dict(type='TopDownRandomFlip', flip_prob=0.5),
|
| 361 |
+
dict(
|
| 362 |
+
type='TopDownHalfBodyTransform',
|
| 363 |
+
num_joints_half_body=8,
|
| 364 |
+
prob_half_body=0.3),
|
| 365 |
+
dict(
|
| 366 |
+
type='TopDownGetRandomScaleRotation',
|
| 367 |
+
rot_factor=40,
|
| 368 |
+
scale_factor=0.5),
|
| 369 |
+
dict(type='TopDownAffine'),
|
| 370 |
+
dict(type='ToTensor'),
|
| 371 |
+
dict(
|
| 372 |
+
type='NormalizeTensor',
|
| 373 |
+
mean=[0.485, 0.456, 0.406],
|
| 374 |
+
std=[0.229, 0.224, 0.225]),
|
| 375 |
+
dict(type='TopDownGenerateTarget', sigma=2),
|
| 376 |
+
dict(
|
| 377 |
+
type='Collect',
|
| 378 |
+
keys=['img', 'target', 'target_weight'],
|
| 379 |
+
meta_keys=[
|
| 380 |
+
'image_file', 'joints_3d', 'joints_3d_visible', 'center',
|
| 381 |
+
'scale', 'rotation', 'bbox_score', 'flip_pairs'
|
| 382 |
+
])
|
| 383 |
+
],
|
| 384 |
+
dataset_info=dict(
|
| 385 |
+
dataset_name='coco',
|
| 386 |
+
paper_info=dict(
|
| 387 |
+
author=
|
| 388 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
| 389 |
+
title='Microsoft coco: Common objects in context',
|
| 390 |
+
container='European conference on computer vision',
|
| 391 |
+
year='2014',
|
| 392 |
+
homepage='http://cocodataset.org/'),
|
| 393 |
+
keypoint_info=dict({
|
| 394 |
+
0:
|
| 395 |
+
dict(
|
| 396 |
+
name='nose',
|
| 397 |
+
id=0,
|
| 398 |
+
color=[51, 153, 255],
|
| 399 |
+
type='upper',
|
| 400 |
+
swap=''),
|
| 401 |
+
1:
|
| 402 |
+
dict(
|
| 403 |
+
name='left_eye',
|
| 404 |
+
id=1,
|
| 405 |
+
color=[51, 153, 255],
|
| 406 |
+
type='upper',
|
| 407 |
+
swap='right_eye'),
|
| 408 |
+
2:
|
| 409 |
+
dict(
|
| 410 |
+
name='right_eye',
|
| 411 |
+
id=2,
|
| 412 |
+
color=[51, 153, 255],
|
| 413 |
+
type='upper',
|
| 414 |
+
swap='left_eye'),
|
| 415 |
+
3:
|
| 416 |
+
dict(
|
| 417 |
+
name='left_ear',
|
| 418 |
+
id=3,
|
| 419 |
+
color=[51, 153, 255],
|
| 420 |
+
type='upper',
|
| 421 |
+
swap='right_ear'),
|
| 422 |
+
4:
|
| 423 |
+
dict(
|
| 424 |
+
name='right_ear',
|
| 425 |
+
id=4,
|
| 426 |
+
color=[51, 153, 255],
|
| 427 |
+
type='upper',
|
| 428 |
+
swap='left_ear'),
|
| 429 |
+
5:
|
| 430 |
+
dict(
|
| 431 |
+
name='left_shoulder',
|
| 432 |
+
id=5,
|
| 433 |
+
color=[0, 255, 0],
|
| 434 |
+
type='upper',
|
| 435 |
+
swap='right_shoulder'),
|
| 436 |
+
6:
|
| 437 |
+
dict(
|
| 438 |
+
name='right_shoulder',
|
| 439 |
+
id=6,
|
| 440 |
+
color=[255, 128, 0],
|
| 441 |
+
type='upper',
|
| 442 |
+
swap='left_shoulder'),
|
| 443 |
+
7:
|
| 444 |
+
dict(
|
| 445 |
+
name='left_elbow',
|
| 446 |
+
id=7,
|
| 447 |
+
color=[0, 255, 0],
|
| 448 |
+
type='upper',
|
| 449 |
+
swap='right_elbow'),
|
| 450 |
+
8:
|
| 451 |
+
dict(
|
| 452 |
+
name='right_elbow',
|
| 453 |
+
id=8,
|
| 454 |
+
color=[255, 128, 0],
|
| 455 |
+
type='upper',
|
| 456 |
+
swap='left_elbow'),
|
| 457 |
+
9:
|
| 458 |
+
dict(
|
| 459 |
+
name='left_wrist',
|
| 460 |
+
id=9,
|
| 461 |
+
color=[0, 255, 0],
|
| 462 |
+
type='upper',
|
| 463 |
+
swap='right_wrist'),
|
| 464 |
+
10:
|
| 465 |
+
dict(
|
| 466 |
+
name='right_wrist',
|
| 467 |
+
id=10,
|
| 468 |
+
color=[255, 128, 0],
|
| 469 |
+
type='upper',
|
| 470 |
+
swap='left_wrist'),
|
| 471 |
+
11:
|
| 472 |
+
dict(
|
| 473 |
+
name='left_hip',
|
| 474 |
+
id=11,
|
| 475 |
+
color=[0, 255, 0],
|
| 476 |
+
type='lower',
|
| 477 |
+
swap='right_hip'),
|
| 478 |
+
12:
|
| 479 |
+
dict(
|
| 480 |
+
name='right_hip',
|
| 481 |
+
id=12,
|
| 482 |
+
color=[255, 128, 0],
|
| 483 |
+
type='lower',
|
| 484 |
+
swap='left_hip'),
|
| 485 |
+
13:
|
| 486 |
+
dict(
|
| 487 |
+
name='left_knee',
|
| 488 |
+
id=13,
|
| 489 |
+
color=[0, 255, 0],
|
| 490 |
+
type='lower',
|
| 491 |
+
swap='right_knee'),
|
| 492 |
+
14:
|
| 493 |
+
dict(
|
| 494 |
+
name='right_knee',
|
| 495 |
+
id=14,
|
| 496 |
+
color=[255, 128, 0],
|
| 497 |
+
type='lower',
|
| 498 |
+
swap='left_knee'),
|
| 499 |
+
15:
|
| 500 |
+
dict(
|
| 501 |
+
name='left_ankle',
|
| 502 |
+
id=15,
|
| 503 |
+
color=[0, 255, 0],
|
| 504 |
+
type='lower',
|
| 505 |
+
swap='right_ankle'),
|
| 506 |
+
16:
|
| 507 |
+
dict(
|
| 508 |
+
name='right_ankle',
|
| 509 |
+
id=16,
|
| 510 |
+
color=[255, 128, 0],
|
| 511 |
+
type='lower',
|
| 512 |
+
swap='left_ankle')
|
| 513 |
+
}),
|
| 514 |
+
skeleton_info=dict({
|
| 515 |
+
0:
|
| 516 |
+
dict(
|
| 517 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
| 518 |
+
1:
|
| 519 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
| 520 |
+
2:
|
| 521 |
+
dict(
|
| 522 |
+
link=('right_ankle', 'right_knee'),
|
| 523 |
+
id=2,
|
| 524 |
+
color=[255, 128, 0]),
|
| 525 |
+
3:
|
| 526 |
+
dict(
|
| 527 |
+
link=('right_knee', 'right_hip'),
|
| 528 |
+
id=3,
|
| 529 |
+
color=[255, 128, 0]),
|
| 530 |
+
4:
|
| 531 |
+
dict(
|
| 532 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
| 533 |
+
255]),
|
| 534 |
+
5:
|
| 535 |
+
dict(
|
| 536 |
+
link=('left_shoulder', 'left_hip'),
|
| 537 |
+
id=5,
|
| 538 |
+
color=[51, 153, 255]),
|
| 539 |
+
6:
|
| 540 |
+
dict(
|
| 541 |
+
link=('right_shoulder', 'right_hip'),
|
| 542 |
+
id=6,
|
| 543 |
+
color=[51, 153, 255]),
|
| 544 |
+
7:
|
| 545 |
+
dict(
|
| 546 |
+
link=('left_shoulder', 'right_shoulder'),
|
| 547 |
+
id=7,
|
| 548 |
+
color=[51, 153, 255]),
|
| 549 |
+
8:
|
| 550 |
+
dict(
|
| 551 |
+
link=('left_shoulder', 'left_elbow'),
|
| 552 |
+
id=8,
|
| 553 |
+
color=[0, 255, 0]),
|
| 554 |
+
9:
|
| 555 |
+
dict(
|
| 556 |
+
link=('right_shoulder', 'right_elbow'),
|
| 557 |
+
id=9,
|
| 558 |
+
color=[255, 128, 0]),
|
| 559 |
+
10:
|
| 560 |
+
dict(
|
| 561 |
+
link=('left_elbow', 'left_wrist'),
|
| 562 |
+
id=10,
|
| 563 |
+
color=[0, 255, 0]),
|
| 564 |
+
11:
|
| 565 |
+
dict(
|
| 566 |
+
link=('right_elbow', 'right_wrist'),
|
| 567 |
+
id=11,
|
| 568 |
+
color=[255, 128, 0]),
|
| 569 |
+
12:
|
| 570 |
+
dict(
|
| 571 |
+
link=('left_eye', 'right_eye'),
|
| 572 |
+
id=12,
|
| 573 |
+
color=[51, 153, 255]),
|
| 574 |
+
13:
|
| 575 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
| 576 |
+
14:
|
| 577 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
| 578 |
+
15:
|
| 579 |
+
dict(
|
| 580 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
| 581 |
+
255]),
|
| 582 |
+
16:
|
| 583 |
+
dict(
|
| 584 |
+
link=('right_eye', 'right_ear'),
|
| 585 |
+
id=16,
|
| 586 |
+
color=[51, 153, 255]),
|
| 587 |
+
17:
|
| 588 |
+
dict(
|
| 589 |
+
link=('left_ear', 'left_shoulder'),
|
| 590 |
+
id=17,
|
| 591 |
+
color=[51, 153, 255]),
|
| 592 |
+
18:
|
| 593 |
+
dict(
|
| 594 |
+
link=('right_ear', 'right_shoulder'),
|
| 595 |
+
id=18,
|
| 596 |
+
color=[51, 153, 255])
|
| 597 |
+
}),
|
| 598 |
+
joint_weights=[
|
| 599 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
| 600 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
| 601 |
+
],
|
| 602 |
+
sigmas=[
|
| 603 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
| 604 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
| 605 |
+
])),
|
| 606 |
+
val=dict(
|
| 607 |
+
type='TopDownCocoDataset',
|
| 608 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
| 609 |
+
img_prefix='data/coco/val2017/',
|
| 610 |
+
data_cfg=dict(
|
| 611 |
+
image_size=[192, 256],
|
| 612 |
+
heatmap_size=[48, 64],
|
| 613 |
+
num_output_channels=17,
|
| 614 |
+
num_joints=17,
|
| 615 |
+
dataset_channel=[[
|
| 616 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 617 |
+
]],
|
| 618 |
+
inference_channel=[
|
| 619 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 620 |
+
],
|
| 621 |
+
soft_nms=False,
|
| 622 |
+
nms_thr=1.0,
|
| 623 |
+
oks_thr=0.9,
|
| 624 |
+
vis_thr=0.2,
|
| 625 |
+
use_gt_bbox=False,
|
| 626 |
+
det_bbox_thr=0.0,
|
| 627 |
+
bbox_file=
|
| 628 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
| 629 |
+
),
|
| 630 |
+
pipeline=[
|
| 631 |
+
dict(type='LoadImageFromFile'),
|
| 632 |
+
dict(type='TopDownAffine'),
|
| 633 |
+
dict(type='ToTensor'),
|
| 634 |
+
dict(
|
| 635 |
+
type='NormalizeTensor',
|
| 636 |
+
mean=[0.485, 0.456, 0.406],
|
| 637 |
+
std=[0.229, 0.224, 0.225]),
|
| 638 |
+
dict(
|
| 639 |
+
type='Collect',
|
| 640 |
+
keys=['img'],
|
| 641 |
+
meta_keys=[
|
| 642 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
| 643 |
+
'flip_pairs'
|
| 644 |
+
])
|
| 645 |
+
],
|
| 646 |
+
dataset_info=dict(
|
| 647 |
+
dataset_name='coco',
|
| 648 |
+
paper_info=dict(
|
| 649 |
+
author=
|
| 650 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
| 651 |
+
title='Microsoft coco: Common objects in context',
|
| 652 |
+
container='European conference on computer vision',
|
| 653 |
+
year='2014',
|
| 654 |
+
homepage='http://cocodataset.org/'),
|
| 655 |
+
keypoint_info=dict({
|
| 656 |
+
0:
|
| 657 |
+
dict(
|
| 658 |
+
name='nose',
|
| 659 |
+
id=0,
|
| 660 |
+
color=[51, 153, 255],
|
| 661 |
+
type='upper',
|
| 662 |
+
swap=''),
|
| 663 |
+
1:
|
| 664 |
+
dict(
|
| 665 |
+
name='left_eye',
|
| 666 |
+
id=1,
|
| 667 |
+
color=[51, 153, 255],
|
| 668 |
+
type='upper',
|
| 669 |
+
swap='right_eye'),
|
| 670 |
+
2:
|
| 671 |
+
dict(
|
| 672 |
+
name='right_eye',
|
| 673 |
+
id=2,
|
| 674 |
+
color=[51, 153, 255],
|
| 675 |
+
type='upper',
|
| 676 |
+
swap='left_eye'),
|
| 677 |
+
3:
|
| 678 |
+
dict(
|
| 679 |
+
name='left_ear',
|
| 680 |
+
id=3,
|
| 681 |
+
color=[51, 153, 255],
|
| 682 |
+
type='upper',
|
| 683 |
+
swap='right_ear'),
|
| 684 |
+
4:
|
| 685 |
+
dict(
|
| 686 |
+
name='right_ear',
|
| 687 |
+
id=4,
|
| 688 |
+
color=[51, 153, 255],
|
| 689 |
+
type='upper',
|
| 690 |
+
swap='left_ear'),
|
| 691 |
+
5:
|
| 692 |
+
dict(
|
| 693 |
+
name='left_shoulder',
|
| 694 |
+
id=5,
|
| 695 |
+
color=[0, 255, 0],
|
| 696 |
+
type='upper',
|
| 697 |
+
swap='right_shoulder'),
|
| 698 |
+
6:
|
| 699 |
+
dict(
|
| 700 |
+
name='right_shoulder',
|
| 701 |
+
id=6,
|
| 702 |
+
color=[255, 128, 0],
|
| 703 |
+
type='upper',
|
| 704 |
+
swap='left_shoulder'),
|
| 705 |
+
7:
|
| 706 |
+
dict(
|
| 707 |
+
name='left_elbow',
|
| 708 |
+
id=7,
|
| 709 |
+
color=[0, 255, 0],
|
| 710 |
+
type='upper',
|
| 711 |
+
swap='right_elbow'),
|
| 712 |
+
8:
|
| 713 |
+
dict(
|
| 714 |
+
name='right_elbow',
|
| 715 |
+
id=8,
|
| 716 |
+
color=[255, 128, 0],
|
| 717 |
+
type='upper',
|
| 718 |
+
swap='left_elbow'),
|
| 719 |
+
9:
|
| 720 |
+
dict(
|
| 721 |
+
name='left_wrist',
|
| 722 |
+
id=9,
|
| 723 |
+
color=[0, 255, 0],
|
| 724 |
+
type='upper',
|
| 725 |
+
swap='right_wrist'),
|
| 726 |
+
10:
|
| 727 |
+
dict(
|
| 728 |
+
name='right_wrist',
|
| 729 |
+
id=10,
|
| 730 |
+
color=[255, 128, 0],
|
| 731 |
+
type='upper',
|
| 732 |
+
swap='left_wrist'),
|
| 733 |
+
11:
|
| 734 |
+
dict(
|
| 735 |
+
name='left_hip',
|
| 736 |
+
id=11,
|
| 737 |
+
color=[0, 255, 0],
|
| 738 |
+
type='lower',
|
| 739 |
+
swap='right_hip'),
|
| 740 |
+
12:
|
| 741 |
+
dict(
|
| 742 |
+
name='right_hip',
|
| 743 |
+
id=12,
|
| 744 |
+
color=[255, 128, 0],
|
| 745 |
+
type='lower',
|
| 746 |
+
swap='left_hip'),
|
| 747 |
+
13:
|
| 748 |
+
dict(
|
| 749 |
+
name='left_knee',
|
| 750 |
+
id=13,
|
| 751 |
+
color=[0, 255, 0],
|
| 752 |
+
type='lower',
|
| 753 |
+
swap='right_knee'),
|
| 754 |
+
14:
|
| 755 |
+
dict(
|
| 756 |
+
name='right_knee',
|
| 757 |
+
id=14,
|
| 758 |
+
color=[255, 128, 0],
|
| 759 |
+
type='lower',
|
| 760 |
+
swap='left_knee'),
|
| 761 |
+
15:
|
| 762 |
+
dict(
|
| 763 |
+
name='left_ankle',
|
| 764 |
+
id=15,
|
| 765 |
+
color=[0, 255, 0],
|
| 766 |
+
type='lower',
|
| 767 |
+
swap='right_ankle'),
|
| 768 |
+
16:
|
| 769 |
+
dict(
|
| 770 |
+
name='right_ankle',
|
| 771 |
+
id=16,
|
| 772 |
+
color=[255, 128, 0],
|
| 773 |
+
type='lower',
|
| 774 |
+
swap='left_ankle')
|
| 775 |
+
}),
|
| 776 |
+
skeleton_info=dict({
|
| 777 |
+
0:
|
| 778 |
+
dict(
|
| 779 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
| 780 |
+
1:
|
| 781 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
| 782 |
+
2:
|
| 783 |
+
dict(
|
| 784 |
+
link=('right_ankle', 'right_knee'),
|
| 785 |
+
id=2,
|
| 786 |
+
color=[255, 128, 0]),
|
| 787 |
+
3:
|
| 788 |
+
dict(
|
| 789 |
+
link=('right_knee', 'right_hip'),
|
| 790 |
+
id=3,
|
| 791 |
+
color=[255, 128, 0]),
|
| 792 |
+
4:
|
| 793 |
+
dict(
|
| 794 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
| 795 |
+
255]),
|
| 796 |
+
5:
|
| 797 |
+
dict(
|
| 798 |
+
link=('left_shoulder', 'left_hip'),
|
| 799 |
+
id=5,
|
| 800 |
+
color=[51, 153, 255]),
|
| 801 |
+
6:
|
| 802 |
+
dict(
|
| 803 |
+
link=('right_shoulder', 'right_hip'),
|
| 804 |
+
id=6,
|
| 805 |
+
color=[51, 153, 255]),
|
| 806 |
+
7:
|
| 807 |
+
dict(
|
| 808 |
+
link=('left_shoulder', 'right_shoulder'),
|
| 809 |
+
id=7,
|
| 810 |
+
color=[51, 153, 255]),
|
| 811 |
+
8:
|
| 812 |
+
dict(
|
| 813 |
+
link=('left_shoulder', 'left_elbow'),
|
| 814 |
+
id=8,
|
| 815 |
+
color=[0, 255, 0]),
|
| 816 |
+
9:
|
| 817 |
+
dict(
|
| 818 |
+
link=('right_shoulder', 'right_elbow'),
|
| 819 |
+
id=9,
|
| 820 |
+
color=[255, 128, 0]),
|
| 821 |
+
10:
|
| 822 |
+
dict(
|
| 823 |
+
link=('left_elbow', 'left_wrist'),
|
| 824 |
+
id=10,
|
| 825 |
+
color=[0, 255, 0]),
|
| 826 |
+
11:
|
| 827 |
+
dict(
|
| 828 |
+
link=('right_elbow', 'right_wrist'),
|
| 829 |
+
id=11,
|
| 830 |
+
color=[255, 128, 0]),
|
| 831 |
+
12:
|
| 832 |
+
dict(
|
| 833 |
+
link=('left_eye', 'right_eye'),
|
| 834 |
+
id=12,
|
| 835 |
+
color=[51, 153, 255]),
|
| 836 |
+
13:
|
| 837 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
| 838 |
+
14:
|
| 839 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
| 840 |
+
15:
|
| 841 |
+
dict(
|
| 842 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
| 843 |
+
255]),
|
| 844 |
+
16:
|
| 845 |
+
dict(
|
| 846 |
+
link=('right_eye', 'right_ear'),
|
| 847 |
+
id=16,
|
| 848 |
+
color=[51, 153, 255]),
|
| 849 |
+
17:
|
| 850 |
+
dict(
|
| 851 |
+
link=('left_ear', 'left_shoulder'),
|
| 852 |
+
id=17,
|
| 853 |
+
color=[51, 153, 255]),
|
| 854 |
+
18:
|
| 855 |
+
dict(
|
| 856 |
+
link=('right_ear', 'right_shoulder'),
|
| 857 |
+
id=18,
|
| 858 |
+
color=[51, 153, 255])
|
| 859 |
+
}),
|
| 860 |
+
joint_weights=[
|
| 861 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
| 862 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
| 863 |
+
],
|
| 864 |
+
sigmas=[
|
| 865 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
| 866 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
| 867 |
+
])),
|
| 868 |
+
test=dict(
|
| 869 |
+
type='TopDownCocoDataset',
|
| 870 |
+
ann_file='data/coco/annotations/person_keypoints_val2017.json',
|
| 871 |
+
img_prefix='data/coco/val2017/',
|
| 872 |
+
data_cfg=dict(
|
| 873 |
+
image_size=[192, 256],
|
| 874 |
+
heatmap_size=[48, 64],
|
| 875 |
+
num_output_channels=17,
|
| 876 |
+
num_joints=17,
|
| 877 |
+
dataset_channel=[[
|
| 878 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 879 |
+
]],
|
| 880 |
+
inference_channel=[
|
| 881 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
|
| 882 |
+
],
|
| 883 |
+
soft_nms=False,
|
| 884 |
+
nms_thr=1.0,
|
| 885 |
+
oks_thr=0.9,
|
| 886 |
+
vis_thr=0.2,
|
| 887 |
+
use_gt_bbox=False,
|
| 888 |
+
det_bbox_thr=0.0,
|
| 889 |
+
bbox_file=
|
| 890 |
+
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json'
|
| 891 |
+
),
|
| 892 |
+
pipeline=[
|
| 893 |
+
dict(type='LoadImageFromFile'),
|
| 894 |
+
dict(type='TopDownAffine'),
|
| 895 |
+
dict(type='ToTensor'),
|
| 896 |
+
dict(
|
| 897 |
+
type='NormalizeTensor',
|
| 898 |
+
mean=[0.485, 0.456, 0.406],
|
| 899 |
+
std=[0.229, 0.224, 0.225]),
|
| 900 |
+
dict(
|
| 901 |
+
type='Collect',
|
| 902 |
+
keys=['img'],
|
| 903 |
+
meta_keys=[
|
| 904 |
+
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
|
| 905 |
+
'flip_pairs'
|
| 906 |
+
])
|
| 907 |
+
],
|
| 908 |
+
dataset_info=dict(
|
| 909 |
+
dataset_name='coco',
|
| 910 |
+
paper_info=dict(
|
| 911 |
+
author=
|
| 912 |
+
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence',
|
| 913 |
+
title='Microsoft coco: Common objects in context',
|
| 914 |
+
container='European conference on computer vision',
|
| 915 |
+
year='2014',
|
| 916 |
+
homepage='http://cocodataset.org/'),
|
| 917 |
+
keypoint_info=dict({
|
| 918 |
+
0:
|
| 919 |
+
dict(
|
| 920 |
+
name='nose',
|
| 921 |
+
id=0,
|
| 922 |
+
color=[51, 153, 255],
|
| 923 |
+
type='upper',
|
| 924 |
+
swap=''),
|
| 925 |
+
1:
|
| 926 |
+
dict(
|
| 927 |
+
name='left_eye',
|
| 928 |
+
id=1,
|
| 929 |
+
color=[51, 153, 255],
|
| 930 |
+
type='upper',
|
| 931 |
+
swap='right_eye'),
|
| 932 |
+
2:
|
| 933 |
+
dict(
|
| 934 |
+
name='right_eye',
|
| 935 |
+
id=2,
|
| 936 |
+
color=[51, 153, 255],
|
| 937 |
+
type='upper',
|
| 938 |
+
swap='left_eye'),
|
| 939 |
+
3:
|
| 940 |
+
dict(
|
| 941 |
+
name='left_ear',
|
| 942 |
+
id=3,
|
| 943 |
+
color=[51, 153, 255],
|
| 944 |
+
type='upper',
|
| 945 |
+
swap='right_ear'),
|
| 946 |
+
4:
|
| 947 |
+
dict(
|
| 948 |
+
name='right_ear',
|
| 949 |
+
id=4,
|
| 950 |
+
color=[51, 153, 255],
|
| 951 |
+
type='upper',
|
| 952 |
+
swap='left_ear'),
|
| 953 |
+
5:
|
| 954 |
+
dict(
|
| 955 |
+
name='left_shoulder',
|
| 956 |
+
id=5,
|
| 957 |
+
color=[0, 255, 0],
|
| 958 |
+
type='upper',
|
| 959 |
+
swap='right_shoulder'),
|
| 960 |
+
6:
|
| 961 |
+
dict(
|
| 962 |
+
name='right_shoulder',
|
| 963 |
+
id=6,
|
| 964 |
+
color=[255, 128, 0],
|
| 965 |
+
type='upper',
|
| 966 |
+
swap='left_shoulder'),
|
| 967 |
+
7:
|
| 968 |
+
dict(
|
| 969 |
+
name='left_elbow',
|
| 970 |
+
id=7,
|
| 971 |
+
color=[0, 255, 0],
|
| 972 |
+
type='upper',
|
| 973 |
+
swap='right_elbow'),
|
| 974 |
+
8:
|
| 975 |
+
dict(
|
| 976 |
+
name='right_elbow',
|
| 977 |
+
id=8,
|
| 978 |
+
color=[255, 128, 0],
|
| 979 |
+
type='upper',
|
| 980 |
+
swap='left_elbow'),
|
| 981 |
+
9:
|
| 982 |
+
dict(
|
| 983 |
+
name='left_wrist',
|
| 984 |
+
id=9,
|
| 985 |
+
color=[0, 255, 0],
|
| 986 |
+
type='upper',
|
| 987 |
+
swap='right_wrist'),
|
| 988 |
+
10:
|
| 989 |
+
dict(
|
| 990 |
+
name='right_wrist',
|
| 991 |
+
id=10,
|
| 992 |
+
color=[255, 128, 0],
|
| 993 |
+
type='upper',
|
| 994 |
+
swap='left_wrist'),
|
| 995 |
+
11:
|
| 996 |
+
dict(
|
| 997 |
+
name='left_hip',
|
| 998 |
+
id=11,
|
| 999 |
+
color=[0, 255, 0],
|
| 1000 |
+
type='lower',
|
| 1001 |
+
swap='right_hip'),
|
| 1002 |
+
12:
|
| 1003 |
+
dict(
|
| 1004 |
+
name='right_hip',
|
| 1005 |
+
id=12,
|
| 1006 |
+
color=[255, 128, 0],
|
| 1007 |
+
type='lower',
|
| 1008 |
+
swap='left_hip'),
|
| 1009 |
+
13:
|
| 1010 |
+
dict(
|
| 1011 |
+
name='left_knee',
|
| 1012 |
+
id=13,
|
| 1013 |
+
color=[0, 255, 0],
|
| 1014 |
+
type='lower',
|
| 1015 |
+
swap='right_knee'),
|
| 1016 |
+
14:
|
| 1017 |
+
dict(
|
| 1018 |
+
name='right_knee',
|
| 1019 |
+
id=14,
|
| 1020 |
+
color=[255, 128, 0],
|
| 1021 |
+
type='lower',
|
| 1022 |
+
swap='left_knee'),
|
| 1023 |
+
15:
|
| 1024 |
+
dict(
|
| 1025 |
+
name='left_ankle',
|
| 1026 |
+
id=15,
|
| 1027 |
+
color=[0, 255, 0],
|
| 1028 |
+
type='lower',
|
| 1029 |
+
swap='right_ankle'),
|
| 1030 |
+
16:
|
| 1031 |
+
dict(
|
| 1032 |
+
name='right_ankle',
|
| 1033 |
+
id=16,
|
| 1034 |
+
color=[255, 128, 0],
|
| 1035 |
+
type='lower',
|
| 1036 |
+
swap='left_ankle')
|
| 1037 |
+
}),
|
| 1038 |
+
skeleton_info=dict({
|
| 1039 |
+
0:
|
| 1040 |
+
dict(
|
| 1041 |
+
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]),
|
| 1042 |
+
1:
|
| 1043 |
+
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]),
|
| 1044 |
+
2:
|
| 1045 |
+
dict(
|
| 1046 |
+
link=('right_ankle', 'right_knee'),
|
| 1047 |
+
id=2,
|
| 1048 |
+
color=[255, 128, 0]),
|
| 1049 |
+
3:
|
| 1050 |
+
dict(
|
| 1051 |
+
link=('right_knee', 'right_hip'),
|
| 1052 |
+
id=3,
|
| 1053 |
+
color=[255, 128, 0]),
|
| 1054 |
+
4:
|
| 1055 |
+
dict(
|
| 1056 |
+
link=('left_hip', 'right_hip'), id=4, color=[51, 153,
|
| 1057 |
+
255]),
|
| 1058 |
+
5:
|
| 1059 |
+
dict(
|
| 1060 |
+
link=('left_shoulder', 'left_hip'),
|
| 1061 |
+
id=5,
|
| 1062 |
+
color=[51, 153, 255]),
|
| 1063 |
+
6:
|
| 1064 |
+
dict(
|
| 1065 |
+
link=('right_shoulder', 'right_hip'),
|
| 1066 |
+
id=6,
|
| 1067 |
+
color=[51, 153, 255]),
|
| 1068 |
+
7:
|
| 1069 |
+
dict(
|
| 1070 |
+
link=('left_shoulder', 'right_shoulder'),
|
| 1071 |
+
id=7,
|
| 1072 |
+
color=[51, 153, 255]),
|
| 1073 |
+
8:
|
| 1074 |
+
dict(
|
| 1075 |
+
link=('left_shoulder', 'left_elbow'),
|
| 1076 |
+
id=8,
|
| 1077 |
+
color=[0, 255, 0]),
|
| 1078 |
+
9:
|
| 1079 |
+
dict(
|
| 1080 |
+
link=('right_shoulder', 'right_elbow'),
|
| 1081 |
+
id=9,
|
| 1082 |
+
color=[255, 128, 0]),
|
| 1083 |
+
10:
|
| 1084 |
+
dict(
|
| 1085 |
+
link=('left_elbow', 'left_wrist'),
|
| 1086 |
+
id=10,
|
| 1087 |
+
color=[0, 255, 0]),
|
| 1088 |
+
11:
|
| 1089 |
+
dict(
|
| 1090 |
+
link=('right_elbow', 'right_wrist'),
|
| 1091 |
+
id=11,
|
| 1092 |
+
color=[255, 128, 0]),
|
| 1093 |
+
12:
|
| 1094 |
+
dict(
|
| 1095 |
+
link=('left_eye', 'right_eye'),
|
| 1096 |
+
id=12,
|
| 1097 |
+
color=[51, 153, 255]),
|
| 1098 |
+
13:
|
| 1099 |
+
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]),
|
| 1100 |
+
14:
|
| 1101 |
+
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]),
|
| 1102 |
+
15:
|
| 1103 |
+
dict(
|
| 1104 |
+
link=('left_eye', 'left_ear'), id=15, color=[51, 153,
|
| 1105 |
+
255]),
|
| 1106 |
+
16:
|
| 1107 |
+
dict(
|
| 1108 |
+
link=('right_eye', 'right_ear'),
|
| 1109 |
+
id=16,
|
| 1110 |
+
color=[51, 153, 255]),
|
| 1111 |
+
17:
|
| 1112 |
+
dict(
|
| 1113 |
+
link=('left_ear', 'left_shoulder'),
|
| 1114 |
+
id=17,
|
| 1115 |
+
color=[51, 153, 255]),
|
| 1116 |
+
18:
|
| 1117 |
+
dict(
|
| 1118 |
+
link=('right_ear', 'right_shoulder'),
|
| 1119 |
+
id=18,
|
| 1120 |
+
color=[51, 153, 255])
|
| 1121 |
+
}),
|
| 1122 |
+
joint_weights=[
|
| 1123 |
+
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0,
|
| 1124 |
+
1.0, 1.2, 1.2, 1.5, 1.5
|
| 1125 |
+
],
|
| 1126 |
+
sigmas=[
|
| 1127 |
+
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072,
|
| 1128 |
+
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089
|
| 1129 |
+
])))
|
examples/demo2.png
ADDED
|
faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:047c8118fc5ca88ba5ae1fab72f2cd6b070501fe3af2f3cba5cfa9a89b44b03e
|
| 3 |
+
size 167287506
|
hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9e0b3ab0439cb68e166c7543e59d2587cd8d7e9acf5ea62a8378eeb82fb50e5
|
| 3 |
+
size 255011654
|