Spaces:
Runtime error
Runtime error
| import torch, torchvision | |
| import sys | |
| # sys.path.insert(0, 'test_mmpose/') | |
| import mim | |
| # mim.install('mmcv-full==1.5.0') | |
| import mmpose | |
| import gradio as gr | |
| import cv2 | |
| from mmpose.apis import (inference_top_down_pose_model, init_pose_model, | |
| vis_pose_result, process_mmdet_results) | |
| from mmdet.apis import inference_detector, init_detector | |
| pose_config = 'configs/topdown_heatmap_hrnet_w48_coco_256x192.py' | |
| pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
| det_config = 'configs/faster_rcnn_r50_fpn_1x_coco.py' | |
| det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
| # initialize pose model | |
| pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') | |
| # initialize detector | |
| det_model = init_detector(det_config, det_checkpoint, device='cpu') | |
| def predict(img): | |
| mmdet_results = inference_detector(det_model, img) | |
| person_results = process_mmdet_results(mmdet_results, cat_id=1) | |
| pose_results, returned_outputs = inference_top_down_pose_model( | |
| pose_model, | |
| img, | |
| person_results, | |
| bbox_thr=0.3, | |
| format='xyxy', | |
| dataset=pose_model.cfg.data.test.type) | |
| vis_result = vis_pose_result( | |
| pose_model, | |
| img, | |
| pose_results, | |
| dataset=pose_model.cfg.data.test.type, | |
| show=False) | |
| #vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) | |
| return vis_result | |
| example_list = ['examples/demo2.png'] | |
| title = "Pose estimation" | |
| description = "" | |
| article = "" | |
| # Create the Gradio demo | |
| demo = gr.Interface(fn=predict, | |
| inputs=gr.Image(), | |
| outputs=[gr.Image(label='Prediction')], | |
| examples=example_list, | |
| title=title, | |
| description=description, | |
| article=article) | |
| # Launch the demo! | |
| demo.launch() |