Spaces:
Sleeping
Sleeping
| # type: ignore | |
| from __future__ import annotations | |
| from gradio import ChatMessage | |
| from transformers.agents import ReactCodeAgent, agent_types | |
| from typing import Generator | |
| def pull_message(step_log: dict): | |
| if step_log.get("rationale"): | |
| yield ChatMessage( | |
| role="assistant", content=step_log["rationale"] | |
| ) | |
| if step_log.get("tool_call"): | |
| used_code = step_log["tool_call"]["tool_name"] == "code interpreter" | |
| content = step_log["tool_call"]["tool_arguments"] | |
| if used_code: | |
| content = f"```py\n{content}\n```" | |
| yield ChatMessage( | |
| role="assistant", | |
| metadata={"title": f"🛠️ Used tool {step_log['tool_call']['tool_name']}"}, | |
| content=content, | |
| ) | |
| if step_log.get("observation"): | |
| yield ChatMessage( | |
| role="assistant", content=f"```\n{step_log['observation']}\n```" | |
| ) | |
| if step_log.get("error"): | |
| yield ChatMessage( | |
| role="assistant", | |
| content=str(step_log["error"]), | |
| metadata={"title": "💥 Error"}, | |
| ) | |
| def stream_from_transformers_agent( | |
| agent: ReactCodeAgent, prompt: str | |
| ) -> Generator[ChatMessage, None, ChatMessage | None]: | |
| """Runs an agent with the given prompt and streams the messages from the agent as ChatMessages.""" | |
| class Output: | |
| output: agent_types.AgentType | str = None | |
| step_log = None | |
| for step_log in agent.run(prompt, stream=True): | |
| if isinstance(step_log, dict): | |
| for message in pull_message(step_log): | |
| print("message", message) | |
| yield message | |
| Output.output = step_log | |
| if isinstance(Output.output, agent_types.AgentText): | |
| yield ChatMessage( | |
| role="assistant", content=f"**Final answer:**\n```\n{Output.output.to_string()}\n```") # type: ignore | |
| elif isinstance(Output.output, agent_types.AgentImage): | |
| yield ChatMessage( | |
| role="assistant", | |
| content={"path": Output.output.to_string(), "mime_type": "image/png"}, # type: ignore | |
| ) | |
| elif isinstance(Output.output, agent_types.AgentAudio): | |
| yield ChatMessage( | |
| role="assistant", | |
| content={"path": Output.output.to_string(), "mime_type": "audio/wav"}, # type: ignore | |
| ) | |
| else: | |
| return ChatMessage(role="assistant", content=Output.output) | |