Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
from gemini.gemini_extractor import GeminiExtractorConfig, GeminiExtractor
|
4 |
+
from oai.oai_extractor import OAIExtractorConfig, OAIExtractor
|
5 |
+
from indexify_extractor_sdk import Content
|
6 |
+
|
7 |
+
gemini_extractor = GeminiExtractor()
|
8 |
+
oai_extractor = OAIExtractor()
|
9 |
+
|
10 |
+
def use_gemini(pdf_filepath, key):
|
11 |
+
if pdf_filepath is None:
|
12 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
13 |
+
with open(pdf_filepath, "rb") as f:
|
14 |
+
pdf_data = f.read()
|
15 |
+
content = Content(content_type="application/pdf", data=pdf_data)
|
16 |
+
config = GeminiExtractorConfig(prompt="Extract all text from the document.", model_name="gemini-1.5-flash", key=key)
|
17 |
+
result = gemini_extractor.extract(content, config)
|
18 |
+
return result
|
19 |
+
|
20 |
+
with gr.Blocks(title="PDF data extraction with Gemini & Indexify") as gemini_demo:
|
21 |
+
gr.HTML("<h1 style='text-align: center'>PDF data extraction with Gemini & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
22 |
+
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
23 |
+
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
24 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_gemini.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
25 |
+
|
26 |
+
with gr.Row():
|
27 |
+
with gr.Column():
|
28 |
+
gr.HTML(
|
29 |
+
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
30 |
+
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
31 |
+
"You can extract from PDF files continuously and try various other extractors locally with "
|
32 |
+
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
33 |
+
)
|
34 |
+
pdf_file = gr.File(type="filepath")
|
35 |
+
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
36 |
+
key = gr.Textbox(info="Please enter your GEMINI_API_KEY", label="Key:")
|
37 |
+
with gr.Column():
|
38 |
+
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
39 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
40 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
41 |
+
|
42 |
+
with gr.Row():
|
43 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
44 |
+
|
45 |
+
go_button.click(fn=use_gemini, inputs=[pdf_file, key], outputs=[model_output_text_box])
|
46 |
+
|
47 |
+
def use_openai(pdf_filepath, key):
|
48 |
+
if pdf_filepath is None:
|
49 |
+
raise gr.Error("Please provide some input PDF: upload a PDF file")
|
50 |
+
with open(pdf_filepath, "rb") as f:
|
51 |
+
pdf_data = f.read()
|
52 |
+
content = Content(content_type="application/pdf", data=pdf_data)
|
53 |
+
config = OAIExtractorConfig(prompt="Extract all text from the document.", model_name="gpt-4o", key=key)
|
54 |
+
result = oai_extractor.extract(content, config)
|
55 |
+
return result
|
56 |
+
|
57 |
+
with gr.Blocks(title="PDF data extraction with OpenAI & Indexify") as openai_demo:
|
58 |
+
gr.HTML("<h1 style='text-align: center'>PDF data extraction with OpenAI & <a href='https://getindexify.ai/'>Indexify</a></h1>")
|
59 |
+
gr.HTML("<p style='text-align: center'>Indexify is a scalable realtime and continuous indexing and structured extraction engine for unstructured data to build generative AI applications</p>")
|
60 |
+
gr.HTML("<h3 style='text-align: center'>If you like this demo, please ⭐ Star us on <a href='https://github.com/tensorlakeai/indexify' target='_blank'>GitHub</a>!</h3>")
|
61 |
+
gr.HTML("<h4 style='text-align: center'>Here's an example notebook that demonstrates how to build a continuous <a href='https://github.com/tensorlakeai/indexify/blob/main/docs/docs/examples/multimodal_openai.ipynb' target='_blank'>extraction pipeline</a> with Indexify</h4>")
|
62 |
+
|
63 |
+
with gr.Row():
|
64 |
+
with gr.Column():
|
65 |
+
gr.HTML(
|
66 |
+
"<p><b>Step 1:</b> Upload a PDF file from local storage.</p>"
|
67 |
+
"<p style='color: #A0A0A0;'>Use this demo for single PDF file only. "
|
68 |
+
"You can extract from PDF files continuously and try various other extractors locally with "
|
69 |
+
"<a href='https://getindexify.ai/'>Indexify</a>.</p>"
|
70 |
+
)
|
71 |
+
pdf_file = gr.File(type="filepath")
|
72 |
+
gr.HTML("<p><b>Step 2:</b> Enter your API key.</p>")
|
73 |
+
key = gr.Textbox(info="Please enter your OPENAI_API_KEY", label="Key:")
|
74 |
+
with gr.Column():
|
75 |
+
gr.HTML("<p><b>Step 3:</b> Run the extractor.</p>")
|
76 |
+
go_button = gr.Button(value="Run extractor", variant="primary")
|
77 |
+
model_output_text_box = gr.Textbox(label="Extractor Output", elem_id="model_output_text_box")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
gr.HTML("<p style='text-align: center'>Developed with 🫶 by <a href='https://getindexify.ai/' target='_blank'>Indexify</a> | a <a href='https://www.tensorlake.ai/' target='_blank'>Tensorlake</a> product</p>")
|
81 |
+
|
82 |
+
go_button.click(fn=use_openai, inputs=[pdf_file, key], outputs=[model_output_text_box])
|
83 |
+
|
84 |
+
demo = gr.TabbedInterface([gemini_demo, openai_demo], ["Gemini Extractor", "OpenAI Extractor"], theme=gr.themes.Soft())
|
85 |
+
|
86 |
+
demo.queue()
|
87 |
+
demo.launch()
|