Spaces:
Running
on
Zero
Running
on
Zero
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import os | |
| import random | |
| import shutil | |
| import time | |
| from glob import glob | |
| from pathlib import Path | |
| import gradio as gr | |
| import torch | |
| import trimesh | |
| import uvicorn | |
| from fastapi import FastAPI | |
| from fastapi.staticfiles import StaticFiles | |
| import uuid | |
| from hy3dgen.shapegen.utils import logger | |
| MAX_SEED = 1e7 | |
| if True: | |
| import os | |
| import spaces | |
| import subprocess | |
| import sys | |
| import shlex | |
| print("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") | |
| os.system("cd /home/user/app/hy3dgen/texgen/differentiable_renderer/ && bash compile_mesh_painter.sh") | |
| print('install custom') | |
| subprocess.run(shlex.split("pip install custom_rasterizer-0.1-cp310-cp310-linux_x86_64.whl"), check=True) | |
| def get_example_img_list(): | |
| print('Loading example img list ...') | |
| return sorted(glob('./assets/example_images/**/*.png', recursive=True)) | |
| def get_example_txt_list(): | |
| print('Loading example txt list ...') | |
| txt_list = list() | |
| for line in open('./assets/example_prompts.txt', encoding='utf-8'): | |
| txt_list.append(line.strip()) | |
| return txt_list | |
| def get_example_mv_list(): | |
| print('Loading example mv list ...') | |
| mv_list = list() | |
| root = './assets/example_mv_images' | |
| for mv_dir in os.listdir(root): | |
| view_list = [] | |
| for view in ['front', 'back', 'left', 'right']: | |
| path = os.path.join(root, mv_dir, f'{view}.png') | |
| if os.path.exists(path): | |
| view_list.append(path) | |
| else: | |
| view_list.append(None) | |
| mv_list.append(view_list) | |
| return mv_list | |
| def gen_save_folder(max_size=200): | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| # 获取所有文件夹路径 | |
| dirs = [f for f in Path(SAVE_DIR).iterdir() if f.is_dir()] | |
| # 如果文件夹数量超过 max_size,删除创建时间最久的文件夹 | |
| if len(dirs) >= max_size: | |
| # 按创建时间排序,最久的排在前面 | |
| oldest_dir = min(dirs, key=lambda x: x.stat().st_ctime) | |
| shutil.rmtree(oldest_dir) | |
| print(f"Removed the oldest folder: {oldest_dir}") | |
| # 生成一个新的 uuid 文件夹名称 | |
| new_folder = os.path.join(SAVE_DIR, str(uuid.uuid4())) | |
| os.makedirs(new_folder, exist_ok=True) | |
| print(f"Created new folder: {new_folder}") | |
| return new_folder | |
| def export_mesh(mesh, save_folder, textured=False, type='glb'): | |
| if textured: | |
| path = os.path.join(save_folder, f'textured_mesh.{type}') | |
| else: | |
| path = os.path.join(save_folder, f'white_mesh.{type}') | |
| if type not in ['glb', 'obj']: | |
| mesh.export(path) | |
| else: | |
| mesh.export(path, include_normals=textured) | |
| return path | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
| # Remove first folder from path to make relative path | |
| if textured: | |
| related_path = f"./textured_mesh.glb" | |
| template_name = './assets/modelviewer-textured-template.html' | |
| output_html_path = os.path.join(save_folder, f'textured_mesh.html') | |
| else: | |
| related_path = f"./white_mesh.glb" | |
| template_name = './assets/modelviewer-template.html' | |
| output_html_path = os.path.join(save_folder, f'white_mesh.html') | |
| offset = 50 if textured else 10 | |
| with open(os.path.join(CURRENT_DIR, template_name), 'r', encoding='utf-8') as f: | |
| template_html = f.read() | |
| with open(output_html_path, 'w', encoding='utf-8') as f: | |
| template_html = template_html.replace('#height#', f'{height - offset}') | |
| template_html = template_html.replace('#width#', f'{width}') | |
| template_html = template_html.replace('#src#', f'{related_path}/') | |
| f.write(template_html) | |
| rel_path = os.path.relpath(output_html_path, SAVE_DIR) | |
| iframe_tag = f'<iframe src="/static/{rel_path}" height="{height}" width="100%" frameborder="0"></iframe>' | |
| print( | |
| f'Find html file {output_html_path}, {os.path.exists(output_html_path)}, relative HTML path is /static/{rel_path}') | |
| return f""" | |
| <div style='height: {height}; width: 100%;'> | |
| {iframe_tag} | |
| </div> | |
| """ | |
| def _gen_shape( | |
| caption=None, | |
| image=None, | |
| mv_image_front=None, | |
| mv_image_back=None, | |
| mv_image_left=None, | |
| mv_image_right=None, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False, | |
| num_chunks=200000, | |
| randomize_seed: bool = False, | |
| ): | |
| if not MV_MODE and image is None and caption is None: | |
| raise gr.Error("Please provide either a caption or an image.") | |
| if MV_MODE: | |
| if mv_image_front is None and mv_image_back is None and mv_image_left is None and mv_image_right is None: | |
| raise gr.Error("Please provide at least one view image.") | |
| image = {} | |
| if mv_image_front: | |
| image['front'] = mv_image_front | |
| if mv_image_back: | |
| image['back'] = mv_image_back | |
| if mv_image_left: | |
| image['left'] = mv_image_left | |
| if mv_image_right: | |
| image['right'] = mv_image_right | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| octree_resolution = int(octree_resolution) | |
| if caption: print('prompt is', caption) | |
| save_folder = gen_save_folder() | |
| stats = { | |
| 'model': { | |
| 'shapegen': f'{args.model_path}/{args.subfolder}', | |
| 'texgen': f'{args.texgen_model_path}', | |
| }, | |
| 'params': { | |
| 'caption': caption, | |
| 'steps': steps, | |
| 'guidance_scale': guidance_scale, | |
| 'seed': seed, | |
| 'octree_resolution': octree_resolution, | |
| 'check_box_rembg': check_box_rembg, | |
| 'num_chunks': num_chunks, | |
| } | |
| } | |
| time_meta = {} | |
| if image is None: | |
| start_time = time.time() | |
| try: | |
| image = t2i_worker(caption) | |
| except Exception as e: | |
| raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") | |
| time_meta['text2image'] = time.time() - start_time | |
| # remove disk io to make responding faster, uncomment at your will. | |
| # image.save(os.path.join(save_folder, 'input.png')) | |
| if MV_MODE: | |
| start_time = time.time() | |
| for k, v in image.items(): | |
| if check_box_rembg or v.mode == "RGB": | |
| img = rmbg_worker(v.convert('RGB')) | |
| image[k] = img | |
| time_meta['remove background'] = time.time() - start_time | |
| else: | |
| if check_box_rembg or image.mode == "RGB": | |
| start_time = time.time() | |
| image = rmbg_worker(image.convert('RGB')) | |
| time_meta['remove background'] = time.time() - start_time | |
| # remove disk io to make responding faster, uncomment at your will. | |
| # image.save(os.path.join(save_folder, 'rembg.png')) | |
| # image to white model | |
| start_time = time.time() | |
| generator = torch.Generator() | |
| generator = generator.manual_seed(int(seed)) | |
| outputs = i23d_worker( | |
| image=image, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| octree_resolution=octree_resolution, | |
| num_chunks=num_chunks, | |
| output_type='mesh' | |
| ) | |
| time_meta['shape generation'] = time.time() - start_time | |
| logger.info("---Shape generation takes %s seconds ---" % (time.time() - start_time)) | |
| tmp_start = time.time() | |
| mesh = export_to_trimesh(outputs)[0] | |
| time_meta['export to trimesh'] = time.time() - tmp_start | |
| stats['number_of_faces'] = mesh.faces.shape[0] | |
| stats['number_of_vertices'] = mesh.vertices.shape[0] | |
| stats['time'] = time_meta | |
| main_image = image if not MV_MODE else image['front'] | |
| return mesh, main_image, save_folder, stats, seed | |
| def generation_all( | |
| caption=None, | |
| image=None, | |
| mv_image_front=None, | |
| mv_image_back=None, | |
| mv_image_left=None, | |
| mv_image_right=None, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False, | |
| num_chunks=200000, | |
| randomize_seed: bool = False, | |
| ): | |
| start_time_0 = time.time() | |
| mesh, image, save_folder, stats, seed = _gen_shape( | |
| caption, | |
| image, | |
| mv_image_front=mv_image_front, | |
| mv_image_back=mv_image_back, | |
| mv_image_left=mv_image_left, | |
| mv_image_right=mv_image_right, | |
| steps=steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| octree_resolution=octree_resolution, | |
| check_box_rembg=check_box_rembg, | |
| num_chunks=num_chunks, | |
| randomize_seed=randomize_seed, | |
| ) | |
| path = export_mesh(mesh, save_folder, textured=False) | |
| # tmp_time = time.time() | |
| # mesh = floater_remove_worker(mesh) | |
| # mesh = degenerate_face_remove_worker(mesh) | |
| # logger.info("---Postprocessing takes %s seconds ---" % (time.time() - tmp_time)) | |
| # stats['time']['postprocessing'] = time.time() - tmp_time | |
| tmp_time = time.time() | |
| mesh = face_reduce_worker(mesh) | |
| logger.info("---Face Reduction takes %s seconds ---" % (time.time() - tmp_time)) | |
| stats['time']['face reduction'] = time.time() - tmp_time | |
| tmp_time = time.time() | |
| textured_mesh = texgen_worker(mesh, image) | |
| logger.info("---Texture Generation takes %s seconds ---" % (time.time() - tmp_time)) | |
| stats['time']['texture generation'] = time.time() - tmp_time | |
| stats['time']['total'] = time.time() - start_time_0 | |
| textured_mesh.metadata['extras'] = stats | |
| path_textured = export_mesh(textured_mesh, save_folder, textured=True) | |
| model_viewer_html_textured = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
| textured=True) | |
| if args.low_vram_mode: | |
| torch.cuda.empty_cache() | |
| return ( | |
| gr.update(value=path), | |
| gr.update(value=path_textured), | |
| model_viewer_html_textured, | |
| stats, | |
| seed, | |
| ) | |
| def shape_generation( | |
| caption=None, | |
| image=None, | |
| mv_image_front=None, | |
| mv_image_back=None, | |
| mv_image_left=None, | |
| mv_image_right=None, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False, | |
| num_chunks=200000, | |
| randomize_seed: bool = False, | |
| ): | |
| start_time_0 = time.time() | |
| mesh, image, save_folder, stats, seed = _gen_shape( | |
| caption, | |
| image, | |
| mv_image_front=mv_image_front, | |
| mv_image_back=mv_image_back, | |
| mv_image_left=mv_image_left, | |
| mv_image_right=mv_image_right, | |
| steps=steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| octree_resolution=octree_resolution, | |
| check_box_rembg=check_box_rembg, | |
| num_chunks=num_chunks, | |
| randomize_seed=randomize_seed, | |
| ) | |
| stats['time']['total'] = time.time() - start_time_0 | |
| mesh.metadata['extras'] = stats | |
| path = export_mesh(mesh, save_folder, textured=False) | |
| model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH) | |
| if args.low_vram_mode: | |
| torch.cuda.empty_cache() | |
| return ( | |
| gr.update(value=path), | |
| model_viewer_html, | |
| stats, | |
| seed, | |
| ) | |
| def build_app(): | |
| title = 'Hunyuan3D-2: High Resolution Textured 3D Assets Generation' | |
| if MV_MODE: | |
| title = 'Hunyuan3D-2mv: Image to 3D Generation with 1-4 Views' | |
| if 'mini' in args.subfolder: | |
| title = 'Hunyuan3D-2mini: Strong 0.6B Image to Shape Generator' | |
| if TURBO_MODE: | |
| title = title.replace(':', '-Turbo: Fast ') | |
| title_html = f""" | |
| <div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> | |
| {title} | |
| </div> | |
| <div align="center"> | |
| Tencent Hunyuan3D Team | |
| </div> | |
| <div align="center"> | |
| <a href="https://github.com/tencent/Hunyuan3D-2">Github</a>   | |
| <a href="http://3d-models.hunyuan.tencent.com">Homepage</a>   | |
| <a href="https://3d.hunyuan.tencent.com">Hunyuan3D Studio</a>   | |
| <a href="#">Technical Report</a>   | |
| <a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Pretrained Models</a>   | |
| </div> | |
| """ | |
| custom_css = """ | |
| .app.svelte-wpkpf6.svelte-wpkpf6:not(.fill_width) { | |
| max-width: 1480px; | |
| } | |
| .mv-image button .wrap { | |
| font-size: 10px; | |
| } | |
| .mv-image .icon-wrap { | |
| width: 20px; | |
| } | |
| """ | |
| with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0', analytics_enabled=False, css=custom_css) as demo: | |
| gr.HTML(title_html) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| with gr.Tabs(selected='tab_img_prompt') as tabs_prompt: | |
| with gr.Tab('Image Prompt', id='tab_img_prompt', visible=not MV_MODE) as tab_ip: | |
| image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290) | |
| with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I and not MV_MODE) as tab_tp: | |
| caption = gr.Textbox(label='Text Prompt', | |
| placeholder='HunyuanDiT will be used to generate image.', | |
| info='Example: A 3D model of a cute cat, white background') | |
| with gr.Tab('MultiView Prompt', visible=MV_MODE) as tab_mv: | |
| # gr.Label('Please upload at least one front image.') | |
| with gr.Row(): | |
| mv_image_front = gr.Image(label='Front', type='pil', image_mode='RGBA', height=140, | |
| min_width=100, elem_classes='mv-image') | |
| mv_image_back = gr.Image(label='Back', type='pil', image_mode='RGBA', height=140, | |
| min_width=100, elem_classes='mv-image') | |
| with gr.Row(): | |
| mv_image_left = gr.Image(label='Left', type='pil', image_mode='RGBA', height=140, | |
| min_width=100, elem_classes='mv-image') | |
| mv_image_right = gr.Image(label='Right', type='pil', image_mode='RGBA', height=140, | |
| min_width=100, elem_classes='mv-image') | |
| with gr.Row(): | |
| btn = gr.Button(value='Gen Shape', variant='primary', min_width=100) | |
| btn_all = gr.Button(value='Gen Textured Shape', | |
| variant='primary', | |
| visible=HAS_TEXTUREGEN, | |
| min_width=100) | |
| with gr.Group(): | |
| file_out = gr.File(label="File", visible=False) | |
| file_out2 = gr.File(label="File", visible=False) | |
| with gr.Tabs(selected='tab_options' if TURBO_MODE else 'tab_export'): | |
| with gr.Tab("Options", id='tab_options', visible=TURBO_MODE): | |
| gen_mode = gr.Radio(label='Generation Mode', | |
| info='Recommendation: Turbo for most cases, Fast for very complex cases, Standard seldom use.', | |
| choices=['Turbo', 'Fast', 'Standard'], value='Turbo') | |
| decode_mode = gr.Radio(label='Decoding Mode', | |
| info='The resolution for exporting mesh from generated vectset', | |
| choices=['Low', 'Standard', 'High'], | |
| value='Standard') | |
| with gr.Tab('Advanced Options', id='tab_advanced_options'): | |
| with gr.Row(): | |
| check_box_rembg = gr.Checkbox(value=True, label='Remove Background', min_width=100) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True, min_width=100) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=1234, | |
| min_width=100, | |
| ) | |
| with gr.Row(): | |
| num_steps = gr.Slider(maximum=100, | |
| minimum=1, | |
| value=5 if 'turbo' in args.subfolder else 30, | |
| step=1, label='Inference Steps') | |
| octree_resolution = gr.Slider(maximum=512, minimum=16, value=256, label='Octree Resolution') | |
| with gr.Row(): | |
| cfg_scale = gr.Number(value=5.0, label='Guidance Scale', min_width=100) | |
| num_chunks = gr.Slider(maximum=5000000, minimum=1000, value=8000, | |
| label='Number of Chunks', min_width=100) | |
| with gr.Tab("Export", id='tab_export'): | |
| with gr.Row(): | |
| file_type = gr.Dropdown(label='File Type', choices=SUPPORTED_FORMATS, | |
| value='glb', min_width=100) | |
| reduce_face = gr.Checkbox(label='Simplify Mesh', value=False, min_width=100) | |
| export_texture = gr.Checkbox(label='Include Texture', value=False, | |
| visible=False, min_width=100) | |
| target_face_num = gr.Slider(maximum=1000000, minimum=100, value=10000, | |
| label='Target Face Number') | |
| with gr.Row(): | |
| confirm_export = gr.Button(value="Transform", min_width=100) | |
| file_export = gr.DownloadButton(label="Download", variant='primary', | |
| interactive=False, min_width=100) | |
| with gr.Column(scale=6): | |
| with gr.Tabs(selected='gen_mesh_panel') as tabs_output: | |
| with gr.Tab('Generated Mesh', id='gen_mesh_panel'): | |
| html_gen_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
| with gr.Tab('Exporting Mesh', id='export_mesh_panel'): | |
| html_export_mesh = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
| with gr.Tab('Mesh Statistic', id='stats_panel'): | |
| stats = gr.Json({}, label='Mesh Stats') | |
| with gr.Column(scale=3 if MV_MODE else 2): | |
| with gr.Tabs(selected='tab_img_gallery') as gallery: | |
| with gr.Tab('Image to 3D Gallery', id='tab_img_gallery', visible=not MV_MODE) as tab_gi: | |
| with gr.Row(): | |
| gr.Examples(examples=example_is, inputs=[image], | |
| label=None, examples_per_page=18) | |
| with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I and not MV_MODE) as tab_gt: | |
| with gr.Row(): | |
| gr.Examples(examples=example_ts, inputs=[caption], | |
| label=None, examples_per_page=18) | |
| with gr.Tab('MultiView to 3D Gallery', id='tab_mv_gallery', visible=MV_MODE) as tab_mv: | |
| with gr.Row(): | |
| gr.Examples(examples=example_mvs, | |
| inputs=[mv_image_front, mv_image_back, mv_image_left, mv_image_right], | |
| label=None, examples_per_page=6) | |
| gr.HTML(f""" | |
| <div align="center"> | |
| Activated Model - Shape Generation ({args.model_path}/{args.subfolder}) ; Texture Generation ({'Hunyuan3D-2' if HAS_TEXTUREGEN else 'Unavailable'}) | |
| </div> | |
| """) | |
| if not HAS_TEXTUREGEN: | |
| gr.HTML(""" | |
| <div style="margin-top: 5px;" align="center"> | |
| <b>Warning: </b> | |
| Texture synthesis is disable due to missing requirements, | |
| please install requirements following <a href="https://github.com/Tencent/Hunyuan3D-2?tab=readme-ov-file#install-requirements">README.md</a>to activate it. | |
| </div> | |
| """) | |
| if not args.enable_t23d: | |
| gr.HTML(""" | |
| <div style="margin-top: 5px;" align="center"> | |
| <b>Warning: </b> | |
| Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`. | |
| </div> | |
| """) | |
| tab_ip.select(fn=lambda: gr.update(selected='tab_img_gallery'), outputs=gallery) | |
| if HAS_T2I: | |
| tab_tp.select(fn=lambda: gr.update(selected='tab_txt_gallery'), outputs=gallery) | |
| btn.click( | |
| shape_generation, | |
| inputs=[ | |
| caption, | |
| image, | |
| mv_image_front, | |
| mv_image_back, | |
| mv_image_left, | |
| mv_image_right, | |
| num_steps, | |
| cfg_scale, | |
| seed, | |
| octree_resolution, | |
| check_box_rembg, | |
| num_chunks, | |
| randomize_seed, | |
| ], | |
| outputs=[file_out, html_gen_mesh, stats, seed] | |
| ).then( | |
| lambda: (gr.update(visible=False, value=False), gr.update(interactive=True), gr.update(interactive=True), | |
| gr.update(interactive=False)), | |
| outputs=[export_texture, reduce_face, confirm_export, file_export], | |
| ).then( | |
| lambda: gr.update(selected='gen_mesh_panel'), | |
| outputs=[tabs_output], | |
| ) | |
| btn_all.click( | |
| generation_all, | |
| inputs=[ | |
| caption, | |
| image, | |
| mv_image_front, | |
| mv_image_back, | |
| mv_image_left, | |
| mv_image_right, | |
| num_steps, | |
| cfg_scale, | |
| seed, | |
| octree_resolution, | |
| check_box_rembg, | |
| num_chunks, | |
| randomize_seed, | |
| ], | |
| outputs=[file_out, file_out2, html_gen_mesh, stats, seed] | |
| ).then( | |
| lambda: (gr.update(visible=True, value=True), gr.update(interactive=False), gr.update(interactive=True), | |
| gr.update(interactive=False)), | |
| outputs=[export_texture, reduce_face, confirm_export, file_export], | |
| ).then( | |
| lambda: gr.update(selected='gen_mesh_panel'), | |
| outputs=[tabs_output], | |
| ) | |
| def on_gen_mode_change(value): | |
| if value == 'Turbo': | |
| return gr.update(value=5) | |
| elif value == 'Fast': | |
| return gr.update(value=10) | |
| else: | |
| return gr.update(value=30) | |
| gen_mode.change(on_gen_mode_change, inputs=[gen_mode], outputs=[num_steps]) | |
| def on_decode_mode_change(value): | |
| if value == 'Low': | |
| return gr.update(value=196) | |
| elif value == 'Standard': | |
| return gr.update(value=256) | |
| else: | |
| return gr.update(value=384) | |
| decode_mode.change(on_decode_mode_change, inputs=[decode_mode], outputs=[octree_resolution]) | |
| def on_export_click(file_out, file_out2, file_type, reduce_face, export_texture, target_face_num): | |
| if file_out is None: | |
| raise gr.Error('Please generate a mesh first.') | |
| print(f'exporting {file_out}') | |
| print(f'reduce face to {target_face_num}') | |
| if export_texture: | |
| mesh = trimesh.load(file_out2) | |
| save_folder = gen_save_folder() | |
| path = export_mesh(mesh, save_folder, textured=True, type=file_type) | |
| # for preview | |
| save_folder = gen_save_folder() | |
| _ = export_mesh(mesh, save_folder, textured=True) | |
| model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
| textured=True) | |
| else: | |
| mesh = trimesh.load(file_out) | |
| mesh = floater_remove_worker(mesh) | |
| mesh = degenerate_face_remove_worker(mesh) | |
| if reduce_face: | |
| mesh = face_reduce_worker(mesh, target_face_num) | |
| save_folder = gen_save_folder() | |
| path = export_mesh(mesh, save_folder, textured=False, type=file_type) | |
| # for preview | |
| save_folder = gen_save_folder() | |
| _ = export_mesh(mesh, save_folder, textured=False) | |
| model_viewer_html = build_model_viewer_html(save_folder, height=HTML_HEIGHT, width=HTML_WIDTH, | |
| textured=False) | |
| print(f'export to {path}') | |
| return model_viewer_html, gr.update(value=path, interactive=True) | |
| confirm_export.click( | |
| lambda: gr.update(selected='export_mesh_panel'), | |
| outputs=[tabs_output], | |
| ).then( | |
| on_export_click, | |
| inputs=[file_out, file_out2, file_type, reduce_face, export_texture, target_face_num], | |
| outputs=[html_export_mesh, file_export] | |
| ) | |
| return demo | |
| if __name__ == '__main__': | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--model_path", type=str, default='tencent/Hunyuan3D-2mini') | |
| parser.add_argument("--subfolder", type=str, default='hunyuan3d-dit-v2-mini-turbo') | |
| parser.add_argument("--texgen_model_path", type=str, default='tencent/Hunyuan3D-2') | |
| parser.add_argument('--port', type=int, default=7860) | |
| parser.add_argument('--host', type=str, default='0.0.0.0') | |
| parser.add_argument('--device', type=str, default='cuda') | |
| parser.add_argument('--mc_algo', type=str, default='dmc') | |
| parser.add_argument('--cache-path', type=str, default='gradio_cache') | |
| parser.add_argument('--enable_t23d', action='store_true') | |
| parser.add_argument('--disable_tex', action='store_true') | |
| parser.add_argument('--enable_flashvdm', action='store_true') | |
| parser.add_argument('--compile', action='store_true') | |
| parser.add_argument('--low_vram_mode', action='store_true') | |
| args = parser.parse_args() | |
| args.enable_flashvdm = True | |
| SAVE_DIR = args.cache_path | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| MV_MODE = 'mv' in args.model_path | |
| TURBO_MODE = 'turbo' in args.subfolder | |
| HTML_HEIGHT = 690 if MV_MODE else 650 | |
| HTML_WIDTH = 500 | |
| HTML_OUTPUT_PLACEHOLDER = f""" | |
| <div style='height: {650}px; width: 100%; border-radius: 8px; border-color: #e5e7eb; border-style: solid; border-width: 1px; display: flex; justify-content: center; align-items: center;'> | |
| <div style='text-align: center; font-size: 16px; color: #6b7280;'> | |
| <p style="color: #8d8d8d;">Welcome to Hunyuan3D!</p> | |
| <p style="color: #8d8d8d;">No mesh here.</p> | |
| </div> | |
| </div> | |
| """ | |
| INPUT_MESH_HTML = """ | |
| <div style='height: 490px; width: 100%; border-radius: 8px; | |
| border-color: #e5e7eb; order-style: solid; border-width: 1px;'> | |
| </div> | |
| """ | |
| example_is = get_example_img_list() | |
| example_ts = get_example_txt_list() | |
| example_mvs = get_example_mv_list() | |
| SUPPORTED_FORMATS = ['glb', 'obj', 'ply', 'stl'] | |
| HAS_TEXTUREGEN = False | |
| if not args.disable_tex: | |
| try: | |
| from hy3dgen.texgen import Hunyuan3DPaintPipeline | |
| texgen_worker = Hunyuan3DPaintPipeline.from_pretrained(args.texgen_model_path) | |
| if args.low_vram_mode: | |
| texgen_worker.enable_model_cpu_offload() | |
| # Not help much, ignore for now. | |
| # if args.compile: | |
| # texgen_worker.models['delight_model'].pipeline.unet.compile() | |
| # texgen_worker.models['delight_model'].pipeline.vae.compile() | |
| # texgen_worker.models['multiview_model'].pipeline.unet.compile() | |
| # texgen_worker.models['multiview_model'].pipeline.vae.compile() | |
| HAS_TEXTUREGEN = True | |
| except Exception as e: | |
| print(e) | |
| print("Failed to load texture generator.") | |
| print('Please try to install requirements by following README.md') | |
| HAS_TEXTUREGEN = False | |
| HAS_T2I = True | |
| if args.enable_t23d: | |
| from hy3dgen.text2image import HunyuanDiTPipeline | |
| t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled') | |
| HAS_T2I = True | |
| from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, MeshSimplifier, \ | |
| Hunyuan3DDiTFlowMatchingPipeline | |
| from hy3dgen.shapegen.pipelines import export_to_trimesh | |
| from hy3dgen.rembg import BackgroundRemover | |
| rmbg_worker = BackgroundRemover() | |
| i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained( | |
| args.model_path, | |
| subfolder=args.subfolder, | |
| use_safetensors=True, | |
| device=args.device, | |
| ) | |
| if args.enable_flashvdm: | |
| mc_algo = 'mc' if args.device in ['cpu', 'mps'] else args.mc_algo | |
| i23d_worker.enable_flashvdm(mc_algo=mc_algo) | |
| if args.compile: | |
| i23d_worker.compile() | |
| floater_remove_worker = FloaterRemover() | |
| degenerate_face_remove_worker = DegenerateFaceRemover() | |
| face_reduce_worker = FaceReducer() | |
| # https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
| # create a FastAPI app | |
| app = FastAPI() | |
| # create a static directory to store the static files | |
| static_dir = Path(SAVE_DIR).absolute() | |
| static_dir.mkdir(parents=True, exist_ok=True) | |
| app.mount("/static", StaticFiles(directory=static_dir, html=True), name="static") | |
| shutil.copytree('./assets/env_maps', os.path.join(static_dir, 'env_maps'), dirs_exist_ok=True) | |
| if args.low_vram_mode: | |
| torch.cuda.empty_cache() | |
| demo = build_app() | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| uvicorn.run(app, host=args.host, port=args.port, workers=1) | |