Spaces:
Running
on
Zero
Running
on
Zero
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import logging | |
| import numpy as np | |
| import os | |
| import torch | |
| from PIL import Image | |
| from typing import Union, Optional | |
| from .differentiable_renderer.mesh_render import MeshRender | |
| from .utils.dehighlight_utils import Light_Shadow_Remover | |
| from .utils.multiview_utils import Multiview_Diffusion_Net | |
| from .utils.imagesuper_utils import Image_Super_Net | |
| from .utils.uv_warp_utils import mesh_uv_wrap | |
| logger = logging.getLogger(__name__) | |
| class Hunyuan3DTexGenConfig: | |
| def __init__(self, light_remover_ckpt_path, multiview_ckpt_path): | |
| self.device = 'cuda' | |
| self.light_remover_ckpt_path = light_remover_ckpt_path | |
| self.multiview_ckpt_path = multiview_ckpt_path | |
| self.candidate_camera_azims = [0, 90, 180, 270, 0, 180] | |
| self.candidate_camera_elevs = [0, 0, 0, 0, 90, -90] | |
| self.candidate_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05] | |
| self.render_size = 2048 | |
| self.texture_size = 2048 | |
| self.bake_exp = 4 | |
| self.merge_method = 'fast' | |
| class Hunyuan3DPaintPipeline: | |
| def from_pretrained(cls, model_path): | |
| original_model_path = model_path | |
| if not os.path.exists(model_path): | |
| # try local path | |
| base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen') | |
| model_path = os.path.expanduser(os.path.join(base_dir, model_path)) | |
| delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0') | |
| multiview_model_path = os.path.join(model_path, 'hunyuan3d-paint-v2-0') | |
| if not os.path.exists(delight_model_path) or not os.path.exists(multiview_model_path): | |
| try: | |
| import huggingface_hub | |
| # download from huggingface | |
| model_path = huggingface_hub.snapshot_download(repo_id=original_model_path, | |
| allow_patterns=["hunyuan3d-delight-v2-0/*"]) | |
| model_path = huggingface_hub.snapshot_download(repo_id=original_model_path, | |
| allow_patterns=["hunyuan3d-paint-v2-0/*"]) | |
| delight_model_path = os.path.join(model_path, 'hunyuan3d-delight-v2-0') | |
| multiview_model_path = os.path.join(model_path, 'hunyuan3d-paint-v2-0') | |
| return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path)) | |
| except ImportError: | |
| logger.warning( | |
| "You need to install HuggingFace Hub to load models from the hub." | |
| ) | |
| raise RuntimeError(f"Model path {model_path} not found") | |
| else: | |
| return cls(Hunyuan3DTexGenConfig(delight_model_path, multiview_model_path)) | |
| raise FileNotFoundError(f"Model path {original_model_path} not found and we could not find it at huggingface") | |
| def __init__(self, config): | |
| self.config = config | |
| self.models = {} | |
| self.render = MeshRender( | |
| default_resolution=self.config.render_size, | |
| texture_size=self.config.texture_size) | |
| self.load_models() | |
| def load_models(self): | |
| # empty cude cache | |
| torch.cuda.empty_cache() | |
| # Load model | |
| self.models['delight_model'] = Light_Shadow_Remover(self.config) | |
| self.models['multiview_model'] = Multiview_Diffusion_Net(self.config) | |
| # self.models['super_model'] = Image_Super_Net(self.config) | |
| def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"): | |
| self.models['delight_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device) | |
| self.models['multiview_model'].pipeline.enable_model_cpu_offload(gpu_id=gpu_id, device=device) | |
| def render_normal_multiview(self, camera_elevs, camera_azims, use_abs_coor=True): | |
| normal_maps = [] | |
| for elev, azim in zip(camera_elevs, camera_azims): | |
| normal_map = self.render.render_normal( | |
| elev, azim, use_abs_coor=use_abs_coor, return_type='pl') | |
| normal_maps.append(normal_map) | |
| return normal_maps | |
| def render_position_multiview(self, camera_elevs, camera_azims): | |
| position_maps = [] | |
| for elev, azim in zip(camera_elevs, camera_azims): | |
| position_map = self.render.render_position( | |
| elev, azim, return_type='pl') | |
| position_maps.append(position_map) | |
| return position_maps | |
| def bake_from_multiview(self, views, camera_elevs, | |
| camera_azims, view_weights, method='graphcut'): | |
| project_textures, project_weighted_cos_maps = [], [] | |
| project_boundary_maps = [] | |
| for view, camera_elev, camera_azim, weight in zip( | |
| views, camera_elevs, camera_azims, view_weights): | |
| project_texture, project_cos_map, project_boundary_map = self.render.back_project( | |
| view, camera_elev, camera_azim) | |
| project_cos_map = weight * (project_cos_map ** self.config.bake_exp) | |
| project_textures.append(project_texture) | |
| project_weighted_cos_maps.append(project_cos_map) | |
| project_boundary_maps.append(project_boundary_map) | |
| if method == 'fast': | |
| texture, ori_trust_map = self.render.fast_bake_texture( | |
| project_textures, project_weighted_cos_maps) | |
| else: | |
| raise f'no method {method}' | |
| return texture, ori_trust_map > 1E-8 | |
| def texture_inpaint(self, texture, mask): | |
| texture_np = self.render.uv_inpaint(texture, mask) | |
| texture = torch.tensor(texture_np / 255).float().to(texture.device) | |
| return texture | |
| def recenter_image(self, image, border_ratio=0.2): | |
| if image.mode == 'RGB': | |
| return image | |
| elif image.mode == 'L': | |
| image = image.convert('RGB') | |
| return image | |
| alpha_channel = np.array(image)[:, :, 3] | |
| non_zero_indices = np.argwhere(alpha_channel > 0) | |
| if non_zero_indices.size == 0: | |
| raise ValueError("Image is fully transparent") | |
| min_row, min_col = non_zero_indices.min(axis=0) | |
| max_row, max_col = non_zero_indices.max(axis=0) | |
| cropped_image = image.crop((min_col, min_row, max_col + 1, max_row + 1)) | |
| width, height = cropped_image.size | |
| border_width = int(width * border_ratio) | |
| border_height = int(height * border_ratio) | |
| new_width = width + 2 * border_width | |
| new_height = height + 2 * border_height | |
| square_size = max(new_width, new_height) | |
| new_image = Image.new('RGBA', (square_size, square_size), (255, 255, 255, 0)) | |
| paste_x = (square_size - new_width) // 2 + border_width | |
| paste_y = (square_size - new_height) // 2 + border_height | |
| new_image.paste(cropped_image, (paste_x, paste_y)) | |
| return new_image | |
| def __call__(self, mesh, image): | |
| if isinstance(image, str): | |
| image_prompt = Image.open(image) | |
| else: | |
| image_prompt = image | |
| image_prompt = self.recenter_image(image_prompt) | |
| image_prompt = self.models['delight_model'](image_prompt) | |
| mesh = mesh_uv_wrap(mesh) | |
| self.render.load_mesh(mesh) | |
| selected_camera_elevs, selected_camera_azims, selected_view_weights = \ | |
| self.config.candidate_camera_elevs, self.config.candidate_camera_azims, self.config.candidate_view_weights | |
| normal_maps = self.render_normal_multiview( | |
| selected_camera_elevs, selected_camera_azims, use_abs_coor=True) | |
| position_maps = self.render_position_multiview( | |
| selected_camera_elevs, selected_camera_azims) | |
| camera_info = [(((azim // 30) + 9) % 12) // {-20: 1, 0: 1, 20: 1, -90: 3, 90: 3}[ | |
| elev] + {-20: 0, 0: 12, 20: 24, -90: 36, 90: 40}[elev] for azim, elev in | |
| zip(selected_camera_azims, selected_camera_elevs)] | |
| multiviews = self.models['multiview_model'](image_prompt, normal_maps + position_maps, camera_info) | |
| for i in range(len(multiviews)): | |
| # multiviews[i] = self.models['super_model'](multiviews[i]) | |
| multiviews[i] = multiviews[i].resize( | |
| (self.config.render_size, self.config.render_size)) | |
| texture, mask = self.bake_from_multiview(multiviews, | |
| selected_camera_elevs, selected_camera_azims, selected_view_weights, | |
| method=self.config.merge_method) | |
| mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) | |
| texture = self.texture_inpaint(texture, mask_np) | |
| self.render.set_texture(texture) | |
| textured_mesh = self.render.save_mesh() | |
| return textured_mesh | |