Spaces:
Running
on
Zero
Running
on
Zero
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import copy | |
| import importlib | |
| import inspect | |
| import logging | |
| import os | |
| from typing import List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import trimesh | |
| import yaml | |
| from PIL import Image | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from tqdm import tqdm | |
| logger = logging.getLogger(__name__) | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| def export_to_trimesh(mesh_output): | |
| if isinstance(mesh_output, list): | |
| outputs = [] | |
| for mesh in mesh_output: | |
| if mesh is None: | |
| outputs.append(None) | |
| else: | |
| mesh.mesh_f = mesh.mesh_f[:, ::-1] | |
| mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f) | |
| outputs.append(mesh_output) | |
| return outputs | |
| else: | |
| mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1] | |
| mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f) | |
| return mesh_output | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def instantiate_from_config(config, **kwargs): | |
| if "target" not in config: | |
| raise KeyError("Expected key `target` to instantiate.") | |
| cls = get_obj_from_str(config["target"]) | |
| params = config.get("params", dict()) | |
| kwargs.update(params) | |
| instance = cls(**kwargs) | |
| return instance | |
| class Hunyuan3DDiTPipeline: | |
| def from_single_file( | |
| cls, | |
| ckpt_path, | |
| config_path, | |
| device='cuda', | |
| dtype=torch.float16, | |
| use_safetensors=None, | |
| **kwargs, | |
| ): | |
| # load config | |
| with open(config_path, 'r') as f: | |
| config = yaml.safe_load(f) | |
| # load ckpt | |
| if use_safetensors: | |
| ckpt_path = ckpt_path.replace('.ckpt', '.safetensors') | |
| if not os.path.exists(ckpt_path): | |
| raise FileNotFoundError(f"Model file {ckpt_path} not found") | |
| logger.info(f"Loading model from {ckpt_path}") | |
| if use_safetensors: | |
| # parse safetensors | |
| import safetensors.torch | |
| safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device='cpu') | |
| ckpt = {} | |
| for key, value in safetensors_ckpt.items(): | |
| model_name = key.split('.')[0] | |
| new_key = key[len(model_name) + 1:] | |
| if model_name not in ckpt: | |
| ckpt[model_name] = {} | |
| ckpt[model_name][new_key] = value | |
| else: | |
| ckpt = torch.load(ckpt_path, map_location='cpu') | |
| # load model | |
| model = instantiate_from_config(config['model']) | |
| model.load_state_dict(ckpt['model']) | |
| vae = instantiate_from_config(config['vae']) | |
| vae.load_state_dict(ckpt['vae']) | |
| conditioner = instantiate_from_config(config['conditioner']) | |
| if 'conditioner' in ckpt: | |
| conditioner.load_state_dict(ckpt['conditioner']) | |
| image_processor = instantiate_from_config(config['image_processor']) | |
| scheduler = instantiate_from_config(config['scheduler']) | |
| model_kwargs = dict( | |
| vae=vae, | |
| model=model, | |
| scheduler=scheduler, | |
| conditioner=conditioner, | |
| image_processor=image_processor, | |
| scheduler_cfg=config['scheduler'], | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| model_kwargs.update(kwargs) | |
| return cls( | |
| **model_kwargs | |
| ) | |
| def from_pretrained( | |
| cls, | |
| model_path, | |
| ckpt_name='model.ckpt', | |
| config_name='config.yaml', | |
| device='cuda', | |
| dtype=torch.float16, | |
| use_safetensors=None, | |
| **kwargs, | |
| ): | |
| original_model_path = model_path | |
| if not os.path.exists(model_path): | |
| # try local path | |
| base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen') | |
| model_path = os.path.expanduser(os.path.join(base_dir, model_path, 'hunyuan3d-dit-v2-0')) | |
| if not os.path.exists(model_path): | |
| try: | |
| import huggingface_hub | |
| # download from huggingface | |
| path = huggingface_hub.snapshot_download(repo_id=original_model_path) | |
| model_path = os.path.join(path, 'hunyuan3d-dit-v2-0') | |
| except ImportError: | |
| logger.warning( | |
| "You need to install HuggingFace Hub to load models from the hub." | |
| ) | |
| raise RuntimeError(f"Model path {model_path} not found") | |
| if not os.path.exists(model_path): | |
| raise FileNotFoundError(f"Model path {original_model_path} not found") | |
| config_path = os.path.join(model_path, config_name) | |
| ckpt_path = os.path.join(model_path, ckpt_name) | |
| return cls.from_single_file( | |
| ckpt_path, | |
| config_path, | |
| device=device, | |
| dtype=dtype, | |
| use_safetensors=use_safetensors, | |
| **kwargs | |
| ) | |
| def __init__( | |
| self, | |
| vae, | |
| model, | |
| scheduler, | |
| conditioner, | |
| image_processor, | |
| device='cuda', | |
| dtype=torch.float16, | |
| **kwargs | |
| ): | |
| self.vae = vae | |
| self.model = model | |
| self.scheduler = scheduler | |
| self.conditioner = conditioner | |
| self.image_processor = image_processor | |
| self.kwargs = kwargs | |
| self.to(device, dtype) | |
| def to(self, device=None, dtype=None): | |
| if device is not None: | |
| self.device = torch.device(device) | |
| self.vae.to(device) | |
| self.model.to(device) | |
| self.conditioner.to(device) | |
| if dtype is not None: | |
| self.dtype = dtype | |
| self.vae.to(dtype=dtype) | |
| self.model.to(dtype=dtype) | |
| self.conditioner.to(dtype=dtype) | |
| def encode_cond(self, image, mask, do_classifier_free_guidance, dual_guidance): | |
| bsz = image.shape[0] | |
| cond = self.conditioner(image=image, mask=mask) | |
| if do_classifier_free_guidance: | |
| un_cond = self.conditioner.unconditional_embedding(bsz) | |
| if dual_guidance: | |
| un_cond_drop_main = copy.deepcopy(un_cond) | |
| un_cond_drop_main['additional'] = cond['additional'] | |
| def cat_recursive(a, b, c): | |
| if isinstance(a, torch.Tensor): | |
| return torch.cat([a, b, c], dim=0).to(self.dtype) | |
| out = {} | |
| for k in a.keys(): | |
| out[k] = cat_recursive(a[k], b[k], c[k]) | |
| return out | |
| cond = cat_recursive(cond, un_cond_drop_main, un_cond) | |
| else: | |
| un_cond = self.conditioner.unconditional_embedding(bsz) | |
| def cat_recursive(a, b): | |
| if isinstance(a, torch.Tensor): | |
| return torch.cat([a, b], dim=0).to(self.dtype) | |
| out = {} | |
| for k in a.keys(): | |
| out[k] = cat_recursive(a[k], b[k]) | |
| return out | |
| cond = cat_recursive(cond, un_cond) | |
| return cond | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents(self, batch_size, dtype, device, generator, latents=None): | |
| shape = (batch_size, *self.vae.latent_shape) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * getattr(self.scheduler, 'init_noise_sigma', 1.0) | |
| return latents | |
| def prepare_image(self, image): | |
| if isinstance(image, str) and not os.path.exists(image): | |
| raise FileNotFoundError(f"Couldn't find image at path {image}") | |
| if not isinstance(image, list): | |
| image = [image] | |
| image_pts = [] | |
| mask_pts = [] | |
| for img in image: | |
| image_pt, mask_pt = self.image_processor(img, return_mask=True) | |
| image_pts.append(image_pt) | |
| mask_pts.append(mask_pt) | |
| image_pts = torch.cat(image_pts, dim=0).to(self.device, dtype=self.dtype) | |
| if mask_pts[0] is not None: | |
| mask_pts = torch.cat(mask_pts, dim=0).to(self.device, dtype=self.dtype) | |
| else: | |
| mask_pts = None | |
| return image_pts, mask_pts | |
| def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): | |
| """ | |
| See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
| Args: | |
| timesteps (`torch.Tensor`): | |
| generate embedding vectors at these timesteps | |
| embedding_dim (`int`, *optional*, defaults to 512): | |
| dimension of the embeddings to generate | |
| dtype: | |
| data type of the generated embeddings | |
| Returns: | |
| `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` | |
| """ | |
| assert len(w.shape) == 1 | |
| w = w * 1000.0 | |
| half_dim = embedding_dim // 2 | |
| emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
| emb = w.to(dtype)[:, None] * emb[None, :] | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
| if embedding_dim % 2 == 1: # zero pad | |
| emb = torch.nn.functional.pad(emb, (0, 1)) | |
| assert emb.shape == (w.shape[0], embedding_dim) | |
| return emb | |
| def __call__( | |
| self, | |
| image: Union[str, List[str], Image.Image] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| eta: float = 0.0, | |
| guidance_scale: float = 7.5, | |
| dual_guidance_scale: float = 10.5, | |
| dual_guidance: bool = True, | |
| generator=None, | |
| box_v=1.01, | |
| octree_resolution=384, | |
| mc_level=-1 / 512, | |
| num_chunks=8000, | |
| mc_algo='mc', | |
| output_type: Optional[str] = "trimesh", | |
| enable_pbar=True, | |
| **kwargs, | |
| ) -> List[List[trimesh.Trimesh]]: | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| device = self.device | |
| dtype = self.dtype | |
| do_classifier_free_guidance = guidance_scale >= 0 and \ | |
| getattr(self.model, 'guidance_cond_proj_dim', None) is None | |
| dual_guidance = dual_guidance_scale >= 0 and dual_guidance | |
| image, mask = self.prepare_image(image) | |
| cond = self.encode_cond(image=image, | |
| mask=mask, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| dual_guidance=dual_guidance) | |
| batch_size = image.shape[0] | |
| t_dtype = torch.long | |
| scheduler = instantiate_from_config(self.kwargs['scheduler_cfg']) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| scheduler, num_inference_steps, device, timesteps, sigmas | |
| ) | |
| latents = self.prepare_latents(batch_size, dtype, device, generator) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| guidance_cond = None | |
| if getattr(self.model, 'guidance_cond_proj_dim', None) is not None: | |
| print('Using lcm guidance scale') | |
| guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size) | |
| guidance_cond = self.get_guidance_scale_embedding( | |
| guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim | |
| ).to(device=device, dtype=latents.dtype) | |
| for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:", leave=False)): | |
| # expand the latents if we are doing classifier free guidance | |
| if do_classifier_free_guidance: | |
| latent_model_input = torch.cat([latents] * (3 if dual_guidance else 2)) | |
| else: | |
| latent_model_input = latents | |
| latent_model_input = scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| timestep_tensor = torch.tensor([t], dtype=t_dtype, device=device) | |
| timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0]) | |
| noise_pred = self.model(latent_model_input, timestep_tensor, cond, guidance_cond=guidance_cond) | |
| # no drop, drop clip, all drop | |
| if do_classifier_free_guidance: | |
| if dual_guidance: | |
| noise_pred_clip, noise_pred_dino, noise_pred_uncond = noise_pred.chunk(3) | |
| noise_pred = ( | |
| noise_pred_uncond | |
| + guidance_scale * (noise_pred_clip - noise_pred_dino) | |
| + dual_guidance_scale * (noise_pred_dino - noise_pred_uncond) | |
| ) | |
| else: | |
| noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| outputs = scheduler.step(noise_pred, t, latents, **extra_step_kwargs) | |
| latents = outputs.prev_sample | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(scheduler, "order", 1) | |
| callback(step_idx, t, outputs) | |
| return self._export( | |
| latents, | |
| output_type, | |
| box_v, mc_level, num_chunks, octree_resolution, mc_algo, | |
| ) | |
| def _export(self, latents, output_type, box_v, mc_level, num_chunks, octree_resolution, mc_algo): | |
| if not output_type == "latent": | |
| latents = 1. / self.vae.scale_factor * latents | |
| latents = self.vae(latents) | |
| outputs = self.vae.latents2mesh( | |
| latents, | |
| bounds=box_v, | |
| mc_level=mc_level, | |
| num_chunks=num_chunks, | |
| octree_resolution=octree_resolution, | |
| mc_algo=mc_algo, | |
| ) | |
| else: | |
| outputs = latents | |
| if output_type == 'trimesh': | |
| outputs = export_to_trimesh(outputs) | |
| return outputs | |
| class Hunyuan3DDiTFlowMatchingPipeline(Hunyuan3DDiTPipeline): | |
| def __call__( | |
| self, | |
| image: Union[str, List[str], Image.Image] = None, | |
| num_inference_steps: int = 50, | |
| timesteps: List[int] = None, | |
| sigmas: List[float] = None, | |
| eta: float = 0.0, | |
| guidance_scale: float = 7.5, | |
| generator=None, | |
| box_v=1.01, | |
| octree_resolution=384, | |
| mc_level=0.0, | |
| mc_algo='mc', | |
| num_chunks=8000, | |
| output_type: Optional[str] = "trimesh", | |
| enable_pbar=True, | |
| **kwargs, | |
| ) -> List[List[trimesh.Trimesh]]: | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| device = self.device | |
| dtype = self.dtype | |
| do_classifier_free_guidance = guidance_scale >= 0 and not ( | |
| hasattr(self.model, 'guidance_embed') and | |
| self.model.guidance_embed is True | |
| ) | |
| image, mask = self.prepare_image(image) | |
| cond = self.encode_cond( | |
| image=image, | |
| mask=mask, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| dual_guidance=False, | |
| ) | |
| batch_size = image.shape[0] | |
| # 5. Prepare timesteps | |
| # NOTE: this is slightly different from common usage, we start from 0. | |
| sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas | |
| scheduler = instantiate_from_config(self.kwargs['scheduler_cfg']) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| ) | |
| latents = self.prepare_latents(batch_size, dtype, device, generator) | |
| guidance = None | |
| if hasattr(self.model, 'guidance_embed') and \ | |
| self.model.guidance_embed is True: | |
| guidance = torch.tensor([guidance_scale] * batch_size, device=device, dtype=dtype) | |
| for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")): | |
| # expand the latents if we are doing classifier free guidance | |
| if do_classifier_free_guidance: | |
| latent_model_input = torch.cat([latents] * 2) | |
| else: | |
| latent_model_input = latents | |
| # NOTE: we assume model get timesteps ranged from 0 to 1 | |
| timestep = t.expand(latent_model_input.shape[0]).to( | |
| latents.dtype) / scheduler.config.num_train_timesteps | |
| noise_pred = self.model(latent_model_input, timestep, cond, guidance=guidance) | |
| if do_classifier_free_guidance: | |
| noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| outputs = scheduler.step(noise_pred, t, latents) | |
| latents = outputs.prev_sample | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(scheduler, "order", 1) | |
| callback(step_idx, t, outputs) | |
| return self._export( | |
| latents, | |
| output_type, | |
| box_v, mc_level, num_chunks, octree_resolution, mc_algo, | |
| ) | |