Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import shutil | |
| import time | |
| from glob import glob | |
| from pathlib import Path | |
| import gradio as gr | |
| import torch | |
| import uvicorn | |
| from fastapi import FastAPI | |
| from fastapi.staticfiles import StaticFiles | |
| def get_example_img_list(): | |
| print('Loading example img list ...') | |
| return sorted(glob('./assets/example_images/*.png')) | |
| def get_example_txt_list(): | |
| print('Loading example txt list ...') | |
| txt_list = list() | |
| for line in open('./assets/example_prompts.txt'): | |
| txt_list.append(line.strip()) | |
| return txt_list | |
| def gen_save_folder(max_size=60): | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| exists = set(int(_) for _ in os.listdir(SAVE_DIR) if not _.startswith(".")) | |
| cur_id = min(set(range(max_size)) - exists) if len(exists) < max_size else -1 | |
| if os.path.exists(f"{SAVE_DIR}/{(cur_id + 1) % max_size}"): | |
| shutil.rmtree(f"{SAVE_DIR}/{(cur_id + 1) % max_size}") | |
| print(f"remove {SAVE_DIR}/{(cur_id + 1) % max_size} success !!!") | |
| save_folder = f"{SAVE_DIR}/{max(0, cur_id)}" | |
| os.makedirs(save_folder, exist_ok=True) | |
| print(f"mkdir {save_folder} suceess !!!") | |
| return save_folder | |
| def export_mesh(mesh, save_folder, textured=False): | |
| if textured: | |
| path = os.path.join(save_folder, f'textured_mesh.glb') | |
| else: | |
| path = os.path.join(save_folder, f'white_mesh.glb') | |
| mesh.export(path, include_normals=textured) | |
| return path | |
| def build_model_viewer_html(save_folder, height=660, width=790, textured=False): | |
| if textured: | |
| related_path = f"./textured_mesh.glb" | |
| template_name = './assets/modelviewer-textured-template.html' | |
| output_html_path = os.path.join(save_folder, f'textured_mesh.html') | |
| else: | |
| related_path = f"./white_mesh.glb" | |
| template_name = './assets/modelviewer-template.html' | |
| output_html_path = os.path.join(save_folder, f'white_mesh.html') | |
| with open(os.path.join(CURRENT_DIR, template_name), 'r') as f: | |
| template_html = f.read() | |
| obj_html = f""" | |
| <div class="column is-mobile is-centered"> | |
| <model-viewer style="height: {height - 10}px; width: {width}px;" rotation-per-second="10deg" id="modelViewer" | |
| src="{related_path}/" disable-tap | |
| environment-image="neutral" auto-rotate camera-target="0m 0m 0m" orientation="0deg 0deg 170deg" shadow-intensity=".9" | |
| ar auto-rotate camera-controls> | |
| </model-viewer> | |
| </div> | |
| """ | |
| with open(output_html_path, 'w') as f: | |
| f.write(template_html.replace('<model-viewer>', obj_html)) | |
| output_html_path = output_html_path.replace(SAVE_DIR + '/', '') | |
| iframe_tag = f'<iframe src="/static/{output_html_path}" height="{height}" width="100%" frameborder="0"></iframe>' | |
| print(f'Find html {output_html_path}, {os.path.exists(output_html_path)}') | |
| return f""" | |
| <div style='height: {height}; width: 100%;'> | |
| {iframe_tag} | |
| </div> | |
| """ | |
| def _gen_shape( | |
| caption, | |
| image, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False, | |
| ): | |
| if caption: print('prompt is', caption) | |
| save_folder = gen_save_folder() | |
| stats = {} | |
| time_meta = {} | |
| start_time_0 = time.time() | |
| if image is None: | |
| start_time = time.time() | |
| try: | |
| image = t2i_worker(caption) | |
| except Exception as e: | |
| raise gr.Error(f"Text to 3D is disable. Please enable it by `python gradio_app.py --enable_t23d`.") | |
| time_meta['text2image'] = time.time() - start_time | |
| image.save(os.path.join(save_folder, 'input.png')) | |
| print(image.mode) | |
| if check_box_rembg or image.mode == "RGB": | |
| start_time = time.time() | |
| image = rmbg_worker(image.convert('RGB')) | |
| time_meta['rembg'] = time.time() - start_time | |
| image.save(os.path.join(save_folder, 'rembg.png')) | |
| # image to white model | |
| start_time = time.time() | |
| generator = torch.Generator() | |
| generator = generator.manual_seed(int(seed)) | |
| mesh = i23d_worker( | |
| image=image, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| octree_resolution=octree_resolution | |
| )[0] | |
| mesh = FloaterRemover()(mesh) | |
| mesh = DegenerateFaceRemover()(mesh) | |
| mesh = FaceReducer()(mesh) | |
| stats['number_of_faces'] = mesh.faces.shape[0] | |
| stats['number_of_vertices'] = mesh.vertices.shape[0] | |
| time_meta['image_to_textured_3d'] = {'total': time.time() - start_time} | |
| time_meta['total'] = time.time() - start_time_0 | |
| stats['time'] = time_meta | |
| return mesh, image, save_folder | |
| def generation_all( | |
| caption, | |
| image, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False | |
| ): | |
| mesh, image, save_folder = _gen_shape( | |
| caption, | |
| image, | |
| steps=steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| octree_resolution=octree_resolution, | |
| check_box_rembg=check_box_rembg | |
| ) | |
| path = export_mesh(mesh, save_folder, textured=False) | |
| model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700) | |
| textured_mesh = texgen_worker(mesh, image) | |
| path_textured = export_mesh(textured_mesh, save_folder, textured=True) | |
| model_viewer_html_textured = build_model_viewer_html(save_folder, height=596, width=700, textured=True) | |
| return ( | |
| gr.update(value=path, visible=True), | |
| gr.update(value=path_textured, visible=True), | |
| model_viewer_html, | |
| model_viewer_html_textured, | |
| ) | |
| def shape_generation( | |
| caption, | |
| image, | |
| steps=50, | |
| guidance_scale=7.5, | |
| seed=1234, | |
| octree_resolution=256, | |
| check_box_rembg=False, | |
| ): | |
| mesh, image, save_folder = _gen_shape( | |
| caption, | |
| image, | |
| steps=steps, | |
| guidance_scale=guidance_scale, | |
| seed=seed, | |
| octree_resolution=octree_resolution, | |
| check_box_rembg=check_box_rembg | |
| ) | |
| path = export_mesh(mesh, save_folder, textured=False) | |
| model_viewer_html = build_model_viewer_html(save_folder, height=596, width=700) | |
| return ( | |
| gr.update(value=path, visible=True), | |
| model_viewer_html, | |
| ) | |
| def build_app(): | |
| title_html = """ | |
| <div style="font-size: 2em; font-weight: bold; text-align: center; margin-bottom: 5px"> | |
| Hunyuan3D-2: Scaling Diffusion Models for High Resolution Textured 3D Assets Generation | |
| </div> | |
| <div align="center"> | |
| Tencent Hunyuan3D Team | |
| </div> | |
| <div align="center"> | |
| <a href="https://github.com/tencent/Hunyuan3D-2">Github Page</a>   | |
| <a href="http://3d-models.hunyuan.tencent.com">Homepage</a>   | |
| <a href="#">Technical Report</a>   | |
| <a href="https://huggingface.co/Tencent/Hunyuan3D-2"> Models</a>   | |
| </div> | |
| """ | |
| with gr.Blocks(theme=gr.themes.Base(), title='Hunyuan-3D-2.0') as demo: | |
| gr.HTML(title_html) | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| with gr.Tabs() as tabs_prompt: | |
| with gr.Tab('Image Prompt', id='tab_img_prompt') as tab_ip: | |
| image = gr.Image(label='Image', type='pil', image_mode='RGBA', height=290) | |
| with gr.Row(): | |
| check_box_rembg = gr.Checkbox(value=True, label='Remove Background') | |
| with gr.Tab('Text Prompt', id='tab_txt_prompt', visible=HAS_T2I) as tab_tp: | |
| caption = gr.Textbox(label='Text Prompt', | |
| placeholder='HunyuanDiT will be used to generate image.', | |
| info='Example: A 3D model of a cute cat, white background') | |
| with gr.Accordion('Advanced Options', open=False): | |
| num_steps = gr.Slider(maximum=50, minimum=20, value=30, step=1, label='Inference Steps') | |
| octree_resolution = gr.Dropdown([256, 384, 512], value=256, label='Octree Resolution') | |
| cfg_scale = gr.Number(value=5.5, label='Guidance Scale') | |
| seed = gr.Slider(maximum=1e7, minimum=0, value=1234, label='Seed') | |
| with gr.Group(): | |
| btn = gr.Button(value='Generate Shape Only', variant='primary') | |
| btn_all = gr.Button(value='Generate Shape and Texture', variant='primary', visible=HAS_TEXTUREGEN) | |
| with gr.Group(): | |
| file_out = gr.File(label="File", visible=False) | |
| file_out2 = gr.File(label="File", visible=False) | |
| with gr.Column(scale=5): | |
| with gr.Tabs(): | |
| with gr.Tab('Generated Mesh') as mesh1: | |
| html_output1 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
| with gr.Tab('Generated Textured Mesh') as mesh2: | |
| html_output2 = gr.HTML(HTML_OUTPUT_PLACEHOLDER, label='Output') | |
| with gr.Column(scale=2): | |
| with gr.Tabs() as gallery: | |
| with gr.Tab('Image to 3D Gallery', id='tab_img_gallery') as tab_gi: | |
| with gr.Row(): | |
| gr.Examples(examples=example_is, inputs=[image], | |
| label="Image Prompts", examples_per_page=18) | |
| with gr.Tab('Text to 3D Gallery', id='tab_txt_gallery', visible=HAS_T2I) as tab_gt: | |
| with gr.Row(): | |
| gr.Examples(examples=example_ts, inputs=[caption], | |
| label="Text Prompts", examples_per_page=18) | |
| if not HAS_TEXTUREGEN: | |
| gr.HTML(""") | |
| <div style="margin-top: 20px;"> | |
| <b>Warning: </b> | |
| Texture synthesis is disable due to missing requirements, | |
| please install requirements following README.md to activate it. | |
| </div> | |
| """) | |
| if not args.enable_t23d: | |
| gr.HTML(""" | |
| <div style="margin-top: 20px;"> | |
| <b>Warning: </b> | |
| Text to 3D is disable. To activate it, please run `python gradio_app.py --enable_t23d`. | |
| </div> | |
| """) | |
| tab_gi.select(fn=lambda: gr.update(selected='tab_img_prompt'), outputs=tabs_prompt) | |
| if HAS_T2I: | |
| tab_gt.select(fn=lambda: gr.update(selected='tab_txt_prompt'), outputs=tabs_prompt) | |
| btn.click( | |
| shape_generation, | |
| inputs=[ | |
| caption, | |
| image, | |
| num_steps, | |
| cfg_scale, | |
| seed, | |
| octree_resolution, | |
| check_box_rembg, | |
| ], | |
| outputs=[file_out, html_output1] | |
| ).then( | |
| lambda: gr.update(visible=True), | |
| outputs=[file_out], | |
| ) | |
| btn_all.click( | |
| generation_all, | |
| inputs=[ | |
| caption, | |
| image, | |
| num_steps, | |
| cfg_scale, | |
| seed, | |
| octree_resolution, | |
| check_box_rembg, | |
| ], | |
| outputs=[file_out, file_out2, html_output1, html_output2] | |
| ).then( | |
| lambda: (gr.update(visible=True), gr.update(visible=True)), | |
| outputs=[file_out, file_out2], | |
| ) | |
| return demo | |
| if __name__ == '__main__': | |
| import argparse | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--port', type=int, default=8080) | |
| parser.add_argument('--cache-path', type=str, default='gradio_cache') | |
| parser.add_argument('--enable_t23d', action='store_true') | |
| args = parser.parse_args() | |
| SAVE_DIR = args.cache_path | |
| os.makedirs(SAVE_DIR, exist_ok=True) | |
| CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
| HTML_OUTPUT_PLACEHOLDER = """ | |
| <div style='height: 596px; width: 100%; border-radius: 8px; border-color: #e5e7eb; order-style: solid; border-width: 1px;'></div> | |
| """ | |
| INPUT_MESH_HTML = """ | |
| <div style='height: 490px; width: 100%; border-radius: 8px; | |
| border-color: #e5e7eb; order-style: solid; border-width: 1px;'> | |
| </div> | |
| """ | |
| example_is = get_example_img_list() | |
| example_ts = get_example_txt_list() | |
| try: | |
| from hy3dgen.texgen import Hunyuan3DPaintPipeline | |
| texgen_worker = Hunyuan3DPaintPipeline.from_pretrained('tencent/Hunyuan3D-2') | |
| HAS_TEXTUREGEN = True | |
| except Exception as e: | |
| print(e) | |
| print("Failed to load texture generator.") | |
| print('Please try to install requirements by following README.md') | |
| HAS_TEXTUREGEN = False | |
| HAS_T2I = False | |
| if args.enable_t23d: | |
| from hy3dgen.text2image import HunyuanDiTPipeline | |
| t2i_worker = HunyuanDiTPipeline('Tencent-Hunyuan--HunyuanDiT-v1.1-Diffusers-Distilled') | |
| HAS_T2I = True | |
| from hy3dgen.shapegen import FaceReducer, FloaterRemover, DegenerateFaceRemover, \ | |
| Hunyuan3DDiTFlowMatchingPipeline | |
| from hy3dgen.rembg import BackgroundRemover | |
| rmbg_worker = BackgroundRemover() | |
| i23d_worker = Hunyuan3DDiTFlowMatchingPipeline.from_pretrained('tencent/Hunyuan3D-2') | |
| floater_remove_worker = FloaterRemover() | |
| degenerate_face_remove_worker = DegenerateFaceRemover() | |
| face_reduce_worker = FaceReducer() | |
| # https://discuss.huggingface.co/t/how-to-serve-an-html-file/33921/2 | |
| # create a FastAPI app | |
| app = FastAPI() | |
| # create a static directory to store the static files | |
| static_dir = Path('./gradio_cache') | |
| static_dir.mkdir(parents=True, exist_ok=True) | |
| app.mount("/static", StaticFiles(directory=static_dir), name="static") | |
| demo = build_app() | |
| app = gr.mount_gradio_app(app, demo, path="/") | |
| uvicorn.run(app, host="0.0.0.0", port=args.port) | |