Spaces:
Running
on
L40S
Running
on
L40S
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import os, sys | |
| sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") | |
| import time | |
| import torch | |
| import random | |
| import numpy as np | |
| from PIL import Image | |
| from einops import rearrange | |
| from PIL import Image, ImageSequence | |
| from infer.utils import seed_everything, timing_decorator, auto_amp_inference | |
| from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool | |
| from mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline | |
| from mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3d_MVD_Lite_Pipeline | |
| def save_gif(pils, save_path, df=False): | |
| # save a list of PIL.Image to gif | |
| spf = 4000 / len(pils) | |
| os.makedirs(os.path.dirname(save_path), exist_ok=True) | |
| pils[0].save(save_path, format="GIF", save_all=True, append_images=pils[1:], duration=spf, loop=0) | |
| return save_path | |
| class Image2Views(): | |
| def __init__(self, | |
| device="cuda:0", use_lite=False, save_memory=False, | |
| std_pretrain='./weights/mvd_std', lite_pretrain='./weights/mvd_lite' | |
| ): | |
| self.device = device | |
| if use_lite: | |
| print("loading", lite_pretrain) | |
| self.pipe = Hunyuan3d_MVD_Lite_Pipeline.from_pretrained( | |
| lite_pretrain, | |
| torch_dtype = torch.float16, | |
| use_safetensors = True, | |
| ) | |
| else: | |
| print("loadding", std_pretrain) | |
| self.pipe = HunYuan3D_MVD_Std_Pipeline.from_pretrained( | |
| std_pretrain, | |
| torch_dtype = torch.float16, | |
| use_safetensors = True, | |
| ) | |
| self.pipe = self.pipe if save_memory else self.pipe.to(device) | |
| self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1] | |
| self.save_memory = save_memory | |
| set_parameter_grad_false(self.pipe.unet) | |
| print('image2views unet model', get_parameter_number(self.pipe.unet)) | |
| def __call__(self, *args, **kwargs): | |
| if self.save_memory: | |
| self.pipe = self.pipe.to(self.device) | |
| torch.cuda.empty_cache() | |
| res = self.call(*args, **kwargs) | |
| self.pipe = self.pipe.to("cpu") | |
| else: | |
| res = self.call(*args, **kwargs) | |
| torch.cuda.empty_cache() | |
| return res | |
| def call(self, pil_img, seed=0, steps=50, guidance_scale=2.0): | |
| seed_everything(seed) | |
| generator = torch.Generator(device=self.device) | |
| res_img = self.pipe(pil_img, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale, | |
| generat=generator).images | |
| show_image = rearrange(np.asarray(res_img[0], dtype=np.uint8), '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
| pils = [res_img[1]]+[Image.fromarray(show_image[idx]) for idx in self.order] | |
| torch.cuda.empty_cache() | |
| return res_img, pils | |
| if __name__ == "__main__": | |
| import argparse | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--rgba_path", type=str, required=True) | |
| parser.add_argument("--output_views_path", type=str, required=True) | |
| parser.add_argument("--output_cond_path", type=str, required=True) | |
| parser.add_argument("--seed", default=0, type=int) | |
| parser.add_argument("--steps", default=50, type=int) | |
| parser.add_argument("--device", default="cuda:0", type=str) | |
| parser.add_argument("--use_lite", default='false', type=str) | |
| return parser.parse_args() | |
| args = get_args() | |
| args.use_lite = str_to_bool(args.use_lite) | |
| rgba_pil = Image.open(args.rgba_path) | |
| assert rgba_pil.mode == "RGBA", "rgba_pil must be RGBA mode" | |
| model = Image2Views(device=args.device, use_lite=args.use_lite) | |
| (views_pil, cond), _ = model(rgba_pil, seed=args.seed, steps=args.steps) | |
| views_pil.save(args.output_views_path) | |
| cond.save(args.output_cond_path) | |