Upload 3 files
Browse files- Dockerfile +19 -0
- app.py +44 -0
- best.pt +3 -0
Dockerfile
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
COPY . /app
|
| 6 |
+
|
| 7 |
+
RUN pip3 install fastapi uvicorn pydantic ultralytics pillow
|
| 8 |
+
RUN useradd -m -u 1000 user
|
| 9 |
+
|
| 10 |
+
USER user
|
| 11 |
+
|
| 12 |
+
ENV HOME=/home/user \
|
| 13 |
+
PATH=/home/user/.local/bin:$PATH
|
| 14 |
+
|
| 15 |
+
WORKDIR $HOME/app
|
| 16 |
+
|
| 17 |
+
COPY --chown=user . $HOME/app
|
| 18 |
+
|
| 19 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from ultralytics import YOLO
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
# Load the YOLO model
|
| 11 |
+
model = YOLO(r'best.pt')
|
| 12 |
+
|
| 13 |
+
class ImageData(BaseModel):
|
| 14 |
+
image_base64: str
|
| 15 |
+
|
| 16 |
+
@app.post("/process_image/")
|
| 17 |
+
async def process_image(data: ImageData):
|
| 18 |
+
try:
|
| 19 |
+
# Decode the base64 string to an image
|
| 20 |
+
image_data = base64.b64decode(data.image_base64)
|
| 21 |
+
image = Image.open(io.BytesIO(image_data))
|
| 22 |
+
|
| 23 |
+
# Process the image with YOLO
|
| 24 |
+
results = model(image)
|
| 25 |
+
result = results[0]
|
| 26 |
+
|
| 27 |
+
# Extract bounding boxes and confidence scores
|
| 28 |
+
boxes = result.boxes.xyxy # Bounding box coordinates
|
| 29 |
+
scores = result.boxes.conf # Confidence scores
|
| 30 |
+
|
| 31 |
+
if len(boxes) > 0:
|
| 32 |
+
# Get the index of the bounding box with the highest score
|
| 33 |
+
highest_score_idx = scores.argmax()
|
| 34 |
+
# Extract the bounding box with the highest score
|
| 35 |
+
highest_score_box = boxes[highest_score_idx].tolist()
|
| 36 |
+
x1, y1, x2, y2 = map(int, highest_score_box) # Convert to integers
|
| 37 |
+
else:
|
| 38 |
+
# If no boxes, return the whole image dimensions
|
| 39 |
+
x1, y1, x2, y2 = 0, 0, image.width, image.height
|
| 40 |
+
|
| 41 |
+
return {"x1": x1, "y1": y1, "x2": x2, "y2": y2}
|
| 42 |
+
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise HTTPException(status_code=500, detail=str(e))
|
best.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10420dfe7db4c88e5bd446f604c3b97e99322962e22e1898ad4d2f325e9b2a3a
|
| 3 |
+
size 52177122
|