tejastake commited on
Commit
b716763
·
verified ·
1 Parent(s): 61bcacf

Update process_img.py

Browse files
Files changed (1) hide show
  1. process_img.py +47 -47
process_img.py CHANGED
@@ -1,48 +1,48 @@
1
- import numpy as np
2
- from PIL import Image, ImageOps
3
- import logging
4
-
5
- class Image_Processor:
6
- def __init__(self):
7
- pass
8
- def is_image_white_by_percentage(self,image_path, white_threshold):
9
- image = image_path.convert('RGB')
10
- image_np = np.array(image)
11
- white_pixel = np.array([255, 255, 255])
12
- white_pixels_count = np.sum(np.all(image_np == white_pixel, axis=-1))
13
- total_pixels = image_np.shape[0] * image_np.shape[1]
14
- white_pixel_percentage = (white_pixels_count / total_pixels) * 100
15
- return white_pixel_percentage > white_threshold
16
-
17
- def padding_white(self,image, output_size=(224, 224)):
18
- # Ensure image is in RGB mode before padding
19
- if image.mode != 'RGB':
20
- image = image.convert('RGB')
21
- new_image = ImageOps.pad(image, output_size, method=Image.Resampling.LANCZOS, color=(255, 255, 255))
22
- return new_image
23
-
24
- def resize_image_with_aspect_ratio(self,img):
25
- target_size=224
26
- width, height = img.size
27
- original_aspect_ratio = width / height
28
- if width > height:
29
- new_width = target_size
30
- new_height = int(target_size / original_aspect_ratio)
31
- else:
32
- new_height = target_size
33
- new_width = int(target_size * original_aspect_ratio)
34
- resized_img = img.resize((new_width, new_height))
35
- return resized_img
36
-
37
- def get_processed_img(self,image):
38
- white_thresh = self.is_image_white_by_percentage(image,50)
39
- if white_thresh == True:
40
- resized_image = self.resize_image_with_aspect_ratio(image)
41
- final_image = self.padding_white(resized_image)
42
- logging.info('Resized and Padded Image')
43
- else:
44
- final_image = self.resize_image_with_aspect_ratio(image)
45
- logging.info('Resized Image')
46
-
47
- final_image = final_image.convert('L') if final_image.mode != 'L' else final_image
48
  return final_image
 
1
+ import numpy as np
2
+ from PIL import Image, ImageOps
3
+ import logging
4
+
5
+ class Image_Processor:
6
+ def __init__(self):
7
+ pass
8
+ def is_image_white_by_percentage(self,image_path, white_threshold):
9
+ image = image_path.convert('RGB')
10
+ image_np = np.array(image)
11
+ white_pixel = np.array([255, 255, 255])
12
+ white_pixels_count = np.sum(np.all(image_np == white_pixel, axis=-1))
13
+ total_pixels = image_np.shape[0] * image_np.shape[1]
14
+ white_pixel_percentage = (white_pixels_count / total_pixels) * 100
15
+ return white_pixel_percentage > white_threshold
16
+
17
+ def padding_white(self,image, output_size=(224, 224)):
18
+ # Ensure image is in RGB mode before padding
19
+ if image.mode != 'RGB':
20
+ image = image.convert('RGB')
21
+ new_image = ImageOps.pad(image, output_size, method=Image.Resampling.LANCZOS, color=(255, 255, 255))
22
+ return new_image
23
+
24
+ def resize_image_with_aspect_ratio(self,img):
25
+ target_size=336
26
+ width, height = img.size
27
+ original_aspect_ratio = width / height
28
+ if width > height:
29
+ new_width = target_size
30
+ new_height = int(target_size / original_aspect_ratio)
31
+ else:
32
+ new_height = target_size
33
+ new_width = int(target_size * original_aspect_ratio)
34
+ resized_img = img.resize((new_width, new_height))
35
+ return resized_img
36
+
37
+ def get_processed_img(self,image):
38
+ white_thresh = self.is_image_white_by_percentage(image,50)
39
+ if white_thresh == True:
40
+ resized_image = self.resize_image_with_aspect_ratio(image)
41
+ final_image = self.padding_white(resized_image)
42
+ logging.info('Resized and Padded Image')
43
+ else:
44
+ final_image = self.resize_image_with_aspect_ratio(image)
45
+ logging.info('Resized Image')
46
+
47
+ final_image = final_image.convert('L') if final_image.mode != 'L' else final_image
48
  return final_image