Spaces:
Runtime error
Runtime error
import gradio as gr | |
from random import randint | |
from all_models import models | |
from externalmod import gr_Interface_load | |
import asyncio | |
import os | |
from threading import RLock | |
lock = RLock() | |
def load_fn(models): | |
global models_load | |
models_load = {} | |
for model in models: | |
if model not in models_load.keys(): | |
try: | |
m = gr_Interface_load(f'models/{model}') | |
except Exception as error: | |
print(error) | |
m = gr.Interface(lambda: None, ['text'], ['image']) | |
models_load.update({model: m}) | |
load_fn(models) | |
num_models = 1 | |
default_models = models[:num_models] | |
inference_timeout = 600 | |
MAX_SEED = 3999999999 | |
def extend_choices(choices): | |
return choices + (num_models - len(choices)) * ['NA'] | |
def update_imgbox(choices): | |
choices_plus = extend_choices(choices) | |
return [gr.Image(None, label=m, visible=(m != 'NA')) for m in choices_plus] | |
def gen_fn(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noise = str('') | |
return models_load[model_str](f'{prompt} {noise}') | |
async def infer(model_str, prompt, seed=1, timeout=inference_timeout): | |
from pathlib import Path | |
kwargs = {} | |
noise = "" | |
kwargs["seed"] = seed | |
task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn, | |
prompt=f'{prompt} {noise}', **kwargs)) | |
await asyncio.sleep(0) | |
try: | |
result = await asyncio.wait_for(task, timeout=timeout) | |
except (Exception, asyncio.TimeoutError) as e: | |
print(e) | |
print(f"Task timed out: {model_str}") | |
if not task.done(): task.cancel() | |
result = None | |
if task.done() and result is not None: | |
with lock: | |
png_path = "image.png" | |
result.save(png_path) | |
image = str(Path(png_path).resolve()) | |
return image | |
return None | |
def gen_fnseed(model_str, prompt, seed=1): | |
if model_str == 'NA': | |
return None | |
try: | |
loop = asyncio.new_event_loop() | |
result = loop.run_until_complete(infer(model_str, prompt, seed, inference_timeout)) | |
except (Exception, asyncio.CancelledError) as e: | |
print(e) | |
print(f"Task aborted: {model_str}") | |
result = None | |
with lock: | |
image = "https://huggingface.co/spaces/Yntec/ToyWorld/resolve/main/error.png" | |
result = image | |
finally: | |
loop.close() | |
return result | |
def gen_fnsix(model_str, prompt): | |
if model_str == 'NA': | |
return None | |
noisesix = str(randint(1941, 2023)) | |
return models_load[model_str](f'{prompt} {noisesix}') | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div> | |
<p> <center><img src="https://huggingface.co/Yntec/OpenGenDiffusers/resolve/main/pp.png" style="height:128px; width:482px; margin-top: -22px; margin-bottom: -44px;" span title="Free ai art image generator Printing Press"></center> | |
</p> | |
""" | |
) | |
gr.HTML( | |
""" | |
<div> | |
<p> <center>For negative prompts, Width and Height, and other features visit John6666's <a href="https://huggingface.co/spaces/John6666/PrintingPress4">Printing Press 4</a>!</center> | |
</p></div> | |
""" | |
) | |
with gr.Tab('One Image'): | |
model_choice = gr.Dropdown(models, label=f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True) | |
txt_input = gr.Textbox(label='Your prompt:') | |
max_imagesone = 1 | |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False) | |
gen_button = gr.Button('Generate') | |
with gr.Row(): | |
output = [gr.Image(label='') for _ in range(max_imagesone)] | |
for i, o in enumerate(output): | |
img_in = gr.Number(i, visible=False) | |
num_imagesone.change(lambda i, n: gr.update(visible=(i < n)), [img_in, num_imagesone], o, show_progress=False) | |
gen_event = gen_button.click(lambda i, n, m, t: gen_fn(m, t) if (i < n) else None, [img_in, num_imagesone, model_choice, txt_input], o, concurrency_limit=None, queue=False) | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77, Omnibus's Maximum Multiplier, and <a href="https://huggingface.co/spaces/Yntec/ToyWorld">Toy World</a>! | |
</p> | |
""" | |
) | |
with gr.Tab('Seed it!'): | |
model_choiceseed = gr.Dropdown(models, label=f'Choose a model from the {len(models)} available! Try clearing the box and typing on it to filter them!', value=models[0], filterable=True) | |
txt_inputseed = gr.Textbox(label='Your prompt:') | |
seed = gr.Slider(label="Use a seed to replicate the same image later", info="Max 3999999999", minimum=0, maximum=MAX_SEED, step=1, value=1) | |
max_imagesseed = 1 | |
num_imagesseed = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='One, because more would make it produce identical images with the seed', visible=False) | |
gen_buttonseed = gr.Button('Generate an image using the seed') | |
with gr.Row(): | |
outputseed = [gr.Image(label='') for _ in range(max_imagesseed)] | |
for i, o in enumerate(outputseed): | |
img_is = gr.Number(i, visible=False) | |
num_imagesseed.change(lambda i, n: gr.update(visible=(i < n)), [img_is, num_imagesseed], o, show_progress=False) | |
gen_eventseed = gr.on(triggers=[gen_buttonseed.click, txt_inputseed.submit], | |
fn=lambda i, n, m, t, n1: gen_fnseed(m, t, n1) if (i < n) else None, | |
inputs=[img_is, num_imagesseed, model_choiceseed, txt_inputseed, seed], outputs=[o], | |
concurrency_limit=None, queue=False) | |
with gr.Row(): | |
gr.HTML( | |
""" | |
<div class="footer"> | |
<p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen彼此 | |
</p> | |
""") |