Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from pydub import AudioSegment
|
| 3 |
from pydub.silence import detect_nonsilent
|
| 4 |
import numpy as np
|
| 5 |
import tempfile
|
| 6 |
-
import os
|
| 7 |
import noisereduce as nr
|
| 8 |
import torch
|
| 9 |
from demucs import pretrained
|
|
@@ -17,90 +19,40 @@ import zipfile
|
|
| 17 |
import datetime
|
| 18 |
import librosa
|
| 19 |
import warnings
|
| 20 |
-
# from faster_whisper import WhisperModel
|
| 21 |
-
# from TTS.api import TTS
|
| 22 |
import base64
|
| 23 |
import pickle
|
| 24 |
import json
|
| 25 |
-
import soundfile as
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
warnings.filterwarnings("ignore")
|
| 29 |
|
| 30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
def file_to_base64_audio(file_path, mime_type="audio/wav"):
|
| 32 |
with open(file_path, "rb") as f:
|
| 33 |
data = f.read()
|
| 34 |
b64 = base64.b64encode(data).decode()
|
| 35 |
return f"data:{mime_type};base64,{b64}"
|
| 36 |
|
| 37 |
-
# === Effects Definitions ===
|
| 38 |
def apply_normalize(audio):
|
| 39 |
return audio.normalize()
|
| 40 |
|
| 41 |
-
def apply_noise_reduction(audio):
|
| 42 |
-
samples, frame_rate = audiosegment_to_array(audio)
|
| 43 |
-
reduced = nr.reduce_noise(y=samples, sr=frame_rate)
|
| 44 |
-
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels)
|
| 45 |
-
|
| 46 |
-
def apply_compression(audio):
|
| 47 |
-
return audio.compress_dynamic_range()
|
| 48 |
-
|
| 49 |
-
def apply_reverb(audio):
|
| 50 |
-
reverb = audio - 10
|
| 51 |
-
return audio.overlay(reverb, position=1000)
|
| 52 |
-
|
| 53 |
-
def apply_pitch_shift(audio, semitones=-2):
|
| 54 |
-
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12)))
|
| 55 |
-
samples = np.array(audio.get_array_of_samples())
|
| 56 |
-
resampled = np.interp(np.arange(0, len(samples), 2 ** (semitones / 12)), np.arange(len(samples)), samples).astype(np.int16)
|
| 57 |
-
return AudioSegment(resampled.tobytes(), frame_rate=new_frame_rate, sample_width=audio.sample_width, channels=audio.channels)
|
| 58 |
-
|
| 59 |
-
def apply_echo(audio, delay_ms=500, decay=0.5):
|
| 60 |
-
echo = audio - 10
|
| 61 |
-
return audio.overlay(echo, position=delay_ms)
|
| 62 |
-
|
| 63 |
-
def apply_stereo_widen(audio, pan_amount=0.3):
|
| 64 |
-
left = audio.pan(-pan_amount)
|
| 65 |
-
right = audio.pan(pan_amount)
|
| 66 |
-
return AudioSegment.from_mono_audiosegments(left, right)
|
| 67 |
-
|
| 68 |
-
def apply_bass_boost(audio, gain=10):
|
| 69 |
-
return audio.low_pass_filter(100).apply_gain(gain)
|
| 70 |
-
|
| 71 |
-
def apply_treble_boost(audio, gain=10):
|
| 72 |
-
return audio.high_pass_filter(4000).apply_gain(gain)
|
| 73 |
-
|
| 74 |
-
def apply_limiter(audio, limit_dB=-1):
|
| 75 |
-
limiter = audio._spawn(audio.raw_data, overrides={"frame_rate": audio.frame_rate})
|
| 76 |
-
return limiter.apply_gain(limit_dB)
|
| 77 |
-
|
| 78 |
-
def apply_auto_gain(audio, target_dB=-20):
|
| 79 |
-
change = target_dB - audio.dBFS
|
| 80 |
-
return audio.apply_gain(change)
|
| 81 |
-
|
| 82 |
-
def apply_vocal_distortion(audio, intensity=0.3):
|
| 83 |
-
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
| 84 |
-
distorted = samples + intensity * np.sin(samples * 2 * np.pi / 32768)
|
| 85 |
-
return array_to_audiosegment(distorted.astype(np.int16), audio.frame_rate, channels=audio.channels)
|
| 86 |
-
|
| 87 |
-
def apply_harmony(audio, shift_semitones=4):
|
| 88 |
-
shifted_up = apply_pitch_shift(audio, shift_semitones)
|
| 89 |
-
shifted_down = apply_pitch_shift(audio, -shift_semitones)
|
| 90 |
-
return audio.overlay(shifted_up).overlay(shifted_down)
|
| 91 |
-
|
| 92 |
-
def apply_stage_mode(audio):
|
| 93 |
-
processed = apply_reverb(audio)
|
| 94 |
-
processed = apply_bass_boost(processed, gain=6)
|
| 95 |
-
return apply_limiter(processed, limit_dB=-2)
|
| 96 |
-
|
| 97 |
-
def apply_bitcrush(audio, bit_depth=8):
|
| 98 |
-
samples = np.array(audio.get_array_of_samples())
|
| 99 |
-
max_val = 2 ** (bit_depth) - 1
|
| 100 |
-
downsampled = np.round(samples / (32768 / max_val)).astype(np.int16)
|
| 101 |
-
return array_to_audiosegment(downsampled, audio.frame_rate // 2, channels=audio.channels)
|
| 102 |
-
|
| 103 |
-
# === Helper Functions ===
|
| 104 |
def audiosegment_to_array(audio):
|
| 105 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
| 106 |
|
|
@@ -112,26 +64,6 @@ def array_to_audiosegment(samples, frame_rate, channels=1):
|
|
| 112 |
channels=channels
|
| 113 |
)
|
| 114 |
|
| 115 |
-
# === Loudness Matching (EBU R128) ===
|
| 116 |
-
try:
|
| 117 |
-
import pyloudnorm as pyln
|
| 118 |
-
except ImportError:
|
| 119 |
-
print("Installing pyloudnorm...")
|
| 120 |
-
import subprocess
|
| 121 |
-
subprocess.run(["pip", "install", "pyloudnorm"])
|
| 122 |
-
import pyloudnorm as pyln
|
| 123 |
-
|
| 124 |
-
def match_loudness(audio_path, target_lufs=-14.0):
|
| 125 |
-
meter = pyln.Meter(44100)
|
| 126 |
-
wav = AudioSegment.from_file(audio_path).set_frame_rate(44100)
|
| 127 |
-
samples = np.array(wav.get_array_of_samples()).astype(np.float64) / 32768.0
|
| 128 |
-
loudness = meter.integrated_loudness(samples)
|
| 129 |
-
gain_db = target_lufs - loudness
|
| 130 |
-
adjusted = wav + gain_db
|
| 131 |
-
out_path = os.path.join(tempfile.gettempdir(), "loudness_output.wav")
|
| 132 |
-
adjusted.export(out_path, format="wav")
|
| 133 |
-
return out_path
|
| 134 |
-
|
| 135 |
# Define eq_map at the global scope
|
| 136 |
eq_map = {
|
| 137 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
|
@@ -156,15 +88,11 @@ eq_map = {
|
|
| 156 |
"Default": []
|
| 157 |
}
|
| 158 |
|
| 159 |
-
# Auto-EQ per Genre function
|
| 160 |
def auto_eq(audio, genre="Pop"):
|
| 161 |
-
from scipy.signal import butter, sosfilt
|
| 162 |
-
|
| 163 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
| 164 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
| 165 |
filtered = sosfilt(sos, samples)
|
| 166 |
return samples + gain * filtered
|
| 167 |
-
|
| 168 |
samples, sr = audiosegment_to_array(audio)
|
| 169 |
samples = samples.astype(np.float64)
|
| 170 |
for band in eq_map.get(genre, []):
|
|
@@ -172,135 +100,45 @@ def auto_eq(audio, genre="Pop"):
|
|
| 172 |
samples = band_eq(samples, sr, low, high, gain)
|
| 173 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
| 174 |
|
| 175 |
-
from scipy.signal import butter, sosfilt
|
| 176 |
-
def band_eq(samples, sr, lowcut, highcut, gain):
|
| 177 |
-
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
| 178 |
-
filtered = sosfilt(sos, samples)
|
| 179 |
-
return samples + gain * filtered
|
| 180 |
-
|
| 181 |
-
samples, sr = audiosegment_to_array(audio)
|
| 182 |
-
samples = samples.astype(np.float64)
|
| 183 |
-
for band in eq_map.get(genre, []):
|
| 184 |
-
low, high, gain = band
|
| 185 |
-
samples = band_eq(samples, sr, low, high, gain)
|
| 186 |
-
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
| 187 |
-
|
| 188 |
-
# === Load Track Helpers ===
|
| 189 |
-
def load_track_local(path, sample_rate, channels=2):
|
| 190 |
-
sig, rate = torchaudio.load(path)
|
| 191 |
-
if rate != sample_rate:
|
| 192 |
-
sig = torchaudio.functional.resample(sig, rate, sample_rate)
|
| 193 |
-
if channels == 1:
|
| 194 |
-
sig = sig.mean(0)
|
| 195 |
-
return sig
|
| 196 |
-
|
| 197 |
-
def save_track(path, wav, sample_rate):
|
| 198 |
-
path = Path(path)
|
| 199 |
-
torchaudio.save(str(path), wav, sample_rate)
|
| 200 |
-
|
| 201 |
-
# === Vocal Isolation Helpers ===
|
| 202 |
-
def apply_vocal_isolation(audio_path):
|
| 203 |
-
model = pretrained.get_model(name='htdemucs')
|
| 204 |
-
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
| 205 |
-
ref = wav.mean(0)
|
| 206 |
-
wav -= ref[:, None]
|
| 207 |
-
sources = apply_model(model, wav[None])[0]
|
| 208 |
-
wav += ref[:, None]
|
| 209 |
-
vocal_track = sources[3].cpu()
|
| 210 |
-
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav")
|
| 211 |
-
save_track(out_path, vocal_track, model.samplerate)
|
| 212 |
-
return out_path
|
| 213 |
-
|
| 214 |
-
# === Stem Splitting Function ===
|
| 215 |
-
def stem_split(audio_path):
|
| 216 |
-
model = pretrained.get_model(name='htdemucs')
|
| 217 |
-
wav = load_track_local(audio_path, model.samplerate, channels=2)
|
| 218 |
-
sources = apply_model(model, wav[None])[0]
|
| 219 |
-
output_dir = tempfile.mkdtemp()
|
| 220 |
-
stem_paths = []
|
| 221 |
-
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']):
|
| 222 |
-
path = os.path.join(output_dir, f"{name}.wav")
|
| 223 |
-
save_track(path, sources[i].cpu(), model.samplerate)
|
| 224 |
-
stem_paths.append(gr.File(value=path))
|
| 225 |
-
return stem_paths
|
| 226 |
-
|
| 227 |
-
# === Process Audio Function – Fully Featured ===
|
| 228 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
| 229 |
status = "🔊 Loading audio..."
|
| 230 |
try:
|
| 231 |
-
# Load input audio file
|
| 232 |
audio = AudioSegment.from_file(audio_file)
|
| 233 |
status = "🛠 Applying effects..."
|
| 234 |
-
|
| 235 |
effect_map_real = {
|
| 236 |
-
"Noise Reduction":
|
| 237 |
-
"Compress Dynamic Range":
|
| 238 |
-
"Add Reverb":
|
| 239 |
-
"Pitch Shift": lambda x:
|
| 240 |
-
"Echo":
|
| 241 |
-
"Stereo Widening":
|
| 242 |
-
"Bass Boost":
|
| 243 |
-
"Treble Boost":
|
| 244 |
"Normalize": apply_normalize,
|
| 245 |
-
"Limiter": lambda x:
|
| 246 |
-
"Auto Gain": lambda x:
|
| 247 |
-
"Vocal Distortion": lambda x:
|
| 248 |
-
"Stage Mode":
|
| 249 |
}
|
| 250 |
-
|
| 251 |
-
history = [audio] # For undo functionality
|
| 252 |
for effect_name in selected_effects:
|
| 253 |
if effect_name in effect_map_real:
|
| 254 |
audio = effect_map_real[effect_name](audio)
|
| 255 |
history.append(audio)
|
| 256 |
-
|
| 257 |
status = "💾 Saving final audio..."
|
| 258 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
|
| 259 |
-
|
| 260 |
-
temp_input = os.path.join(tempfile.gettempdir(), "input.wav")
|
| 261 |
-
audio.export(temp_input, format="wav")
|
| 262 |
-
vocal_path = apply_vocal_isolation(temp_input)
|
| 263 |
-
final_audio = AudioSegment.from_wav(vocal_path)
|
| 264 |
-
else:
|
| 265 |
-
final_audio = audio
|
| 266 |
output_path = f.name
|
| 267 |
final_audio.export(output_path, format=export_format.lower())
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
genre = detect_genre(output_path)
|
| 271 |
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
|
| 272 |
status = "🎉 Done!"
|
| 273 |
return output_path, waveform_image, session_log, genre, status, history
|
| 274 |
-
|
| 275 |
except Exception as e:
|
| 276 |
status = f"❌ Error: {str(e)}"
|
| 277 |
return None, None, status, "", status, []
|
| 278 |
|
| 279 |
-
# Waveform preview
|
| 280 |
-
def show_waveform(audio_file):
|
| 281 |
-
try:
|
| 282 |
-
audio = AudioSegment.from_file(audio_file)
|
| 283 |
-
samples = np.array(audio.get_array_of_samples())
|
| 284 |
-
plt.figure(figsize=(10, 2))
|
| 285 |
-
plt.plot(samples[:10000], color="skyblue")
|
| 286 |
-
plt.axis("off")
|
| 287 |
-
buf = BytesIO()
|
| 288 |
-
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100)
|
| 289 |
-
plt.close()
|
| 290 |
-
buf.seek(0)
|
| 291 |
-
return Image.open(buf)
|
| 292 |
-
except Exception:
|
| 293 |
-
return None
|
| 294 |
-
|
| 295 |
-
# Genre detection stub
|
| 296 |
-
def detect_genre(audio_path):
|
| 297 |
-
try:
|
| 298 |
-
y, sr = torchaudio.load(audio_path)
|
| 299 |
-
return "Speech"
|
| 300 |
-
except Exception:
|
| 301 |
-
return "Unknown"
|
| 302 |
-
|
| 303 |
-
# Session log generator
|
| 304 |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
|
| 305 |
return json.dumps({
|
| 306 |
"timestamp": str(datetime.datetime.now()),
|
|
@@ -311,223 +149,39 @@ def generate_session_log(audio_path, effects, isolate_vocals, export_format, gen
|
|
| 311 |
"detected_genre": genre
|
| 312 |
}, indent=2)
|
| 313 |
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
"Podcast Intro": ["Echo", "Reverb", "Pitch Shift (+1 semitone)"],
|
| 348 |
-
"Vintage Radio": ["Bitcrusher", "Low-Pass Filter (4000Hz)", "Saturation"],
|
| 349 |
-
"Speech Enhancement": ["Noise Reduction", "High Pass Filter (100Hz)", "Normalize", "Auto Gain"],
|
| 350 |
-
"Nightcore Speed": ["Pitch Shift (+3 semitones)", "Time Stretch (1.2x)", "Treble Boost"],
|
| 351 |
-
"Robot Voice": ["Pitch Shift (-12 semitones)", "Bitcrusher", "Low-Pass Filter (2000Hz)"],
|
| 352 |
-
"Underwater Effect": ["Low-Pass Filter (1000Hz)", "Reverb", "Echo"],
|
| 353 |
-
"Alien Voice": ["Pitch Shift (+7 semitones)", "Tape Saturation", "Echo"],
|
| 354 |
-
"Cinematic Voice": ["Reverb", "Limiter", "Bass Boost", "Auto Gain"],
|
| 355 |
-
"Phone Call Sim": ["Low-Pass Filter (3400Hz)", "Noise Gate", "Compression"],
|
| 356 |
-
"AI Generated Voice": ["Pitch Shift", "Vocal Distortion"],
|
| 357 |
-
}
|
| 358 |
-
|
| 359 |
-
preset_names = list(preset_choices.keys())
|
| 360 |
-
|
| 361 |
-
# Batch Processing
|
| 362 |
-
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format):
|
| 363 |
-
try:
|
| 364 |
-
output_dir = tempfile.mkdtemp()
|
| 365 |
-
results = []
|
| 366 |
-
session_logs = []
|
| 367 |
-
for file in files:
|
| 368 |
-
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format)[0:5]
|
| 369 |
-
results.append(processed_path)
|
| 370 |
-
session_logs.append(log)
|
| 371 |
-
zip_path = os.path.join(tempfile.gettempdir(), "batch_output.zip")
|
| 372 |
-
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
| 373 |
-
for i, res in enumerate(results):
|
| 374 |
-
filename = f"processed_{i}.{export_format.lower()}"
|
| 375 |
-
zipf.write(res, filename)
|
| 376 |
-
zipf.writestr(f"session_info_{i}.json", session_logs[i])
|
| 377 |
-
return zip_path, "📦 ZIP created successfully!"
|
| 378 |
-
except Exception as e:
|
| 379 |
-
return None, f"❌ Batch processing failed: {str(e)}"
|
| 380 |
-
|
| 381 |
-
# AI Remastering
|
| 382 |
-
def ai_remaster(audio_path):
|
| 383 |
-
try:
|
| 384 |
-
audio = AudioSegment.from_file(audio_path)
|
| 385 |
-
samples, sr = audiosegment_to_array(audio)
|
| 386 |
-
reduced = nr.reduce_noise(y=samples, sr=sr)
|
| 387 |
-
cleaned = array_to_audiosegment(reduced, sr, channels=audio.channels)
|
| 388 |
-
cleaned_wav_path = os.path.join(tempfile.gettempdir(), "cleaned.wav")
|
| 389 |
-
cleaned.export(cleaned_wav_path, format="wav")
|
| 390 |
-
isolated_path = apply_vocal_isolation(cleaned_wav_path)
|
| 391 |
-
final_path = ai_mastering_chain(isolated_path, genre="Pop", target_lufs=-14.0)
|
| 392 |
-
return final_path
|
| 393 |
-
except Exception as e:
|
| 394 |
-
print(f"Remastering Error: {str(e)}")
|
| 395 |
-
return None
|
| 396 |
-
|
| 397 |
-
def ai_mastering_chain(audio_path, genre="Pop", target_lufs=-14.0):
|
| 398 |
-
audio = AudioSegment.from_file(audio_path)
|
| 399 |
-
audio = auto_eq(audio, genre=genre)
|
| 400 |
-
audio = match_loudness(audio_path, target_lufs=target_lufs)
|
| 401 |
-
audio = apply_stereo_widen(audio, pan_amount=0.3)
|
| 402 |
-
out_path = os.path.join(tempfile.gettempdir(), "mastered_output.wav")
|
| 403 |
-
audio.export(out_path, format="wav")
|
| 404 |
-
return out_path
|
| 405 |
-
|
| 406 |
-
# Harmonic Saturation
|
| 407 |
-
def harmonic_saturation(audio, saturation_type="Tube", intensity=0.2):
|
| 408 |
-
samples = np.array(audio.get_array_of_samples()).astype(np.float32)
|
| 409 |
-
if saturation_type == "Tube":
|
| 410 |
-
saturated = np.tanh(intensity * samples)
|
| 411 |
-
elif saturation_type == "Tape":
|
| 412 |
-
saturated = np.where(samples > 0, 1 - np.exp(-intensity * samples), -1 + np.exp(intensity * samples))
|
| 413 |
-
elif saturation_type == "Console":
|
| 414 |
-
saturated = np.clip(samples, -32768, 32768) * intensity
|
| 415 |
-
elif saturation_type == "Mix Bus":
|
| 416 |
-
saturated = np.log1p(np.abs(samples)) * np.sign(samples) * intensity
|
| 417 |
-
else:
|
| 418 |
-
saturated = samples
|
| 419 |
-
return array_to_audiosegment(saturated.astype(np.int16), audio.frame_rate, channels=audio.channels)
|
| 420 |
-
|
| 421 |
-
# Vocal Formant Correction
|
| 422 |
-
def formant_correct(audio, shift=1.0):
|
| 423 |
-
samples, sr = audiosegment_to_array(audio)
|
| 424 |
-
corrected = librosa.effects.pitch_shift(samples, sr=sr, n_steps=shift)
|
| 425 |
-
return array_to_audiosegment(corrected.astype(np.int16), sr, channels=audio.channels)
|
| 426 |
-
|
| 427 |
-
# Voice Swap
|
| 428 |
-
def clone_voice(source_audio, reference_audio):
|
| 429 |
-
source = AudioSegment.from_file(source_audio)
|
| 430 |
-
ref = AudioSegment.from_file(reference_audio)
|
| 431 |
-
mixed = source.overlay(ref - 10)
|
| 432 |
-
out_path = os.path.join(tempfile.gettempdir(), "cloned_output.wav")
|
| 433 |
-
mixed.export(out_path, format="wav")
|
| 434 |
-
return out_path
|
| 435 |
-
|
| 436 |
-
# Save/Load Mix Session (.aiproj)
|
| 437 |
-
def save_project(audio, preset, effects):
|
| 438 |
-
project_data = {
|
| 439 |
-
"audio": AudioSegment.from_file(audio).raw_data,
|
| 440 |
-
"preset": preset,
|
| 441 |
-
"effects": effects
|
| 442 |
-
}
|
| 443 |
-
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj")
|
| 444 |
-
with open(out_path, "wb") as f:
|
| 445 |
-
pickle.dump(project_data, f)
|
| 446 |
-
return out_path
|
| 447 |
-
|
| 448 |
-
def load_project(project_file):
|
| 449 |
-
with open(project_file.name, "rb") as f:
|
| 450 |
-
data = pickle.load(f)
|
| 451 |
-
return data["preset"], data["effects"]
|
| 452 |
-
|
| 453 |
-
# Prompt-Based Editing
|
| 454 |
-
def process_prompt(audio, prompt):
|
| 455 |
-
return apply_noise_reduction(audio)
|
| 456 |
-
|
| 457 |
-
# Vocal Pitch Correction
|
| 458 |
-
def auto_tune_vocal(audio_path, target_key="C"):
|
| 459 |
-
try:
|
| 460 |
-
audio = AudioSegment.from_file(audio_path)
|
| 461 |
-
semitones = key_to_semitone(target_key)
|
| 462 |
-
tuned_audio = apply_pitch_shift(audio, semitones)
|
| 463 |
-
out_path = os.path.join(tempfile.gettempdir(), "autotuned_output.wav")
|
| 464 |
-
tuned_audio.export(out_path, format="wav")
|
| 465 |
-
return out_path
|
| 466 |
-
except Exception as e:
|
| 467 |
-
print(f"Auto-Tune Error: {e}")
|
| 468 |
-
return None
|
| 469 |
-
|
| 470 |
-
def key_to_semitone(key="C"):
|
| 471 |
-
keys = {"C": 0, "C#": 1, "D": 2, "D#": 3, "E": 4, "F": 5,
|
| 472 |
-
"F#": 6, "G": 7, "G#": 8, "A": 9, "A#": 10, "B": 11}
|
| 473 |
-
return keys.get(key, 0)
|
| 474 |
-
|
| 475 |
-
# Loop Section Tool
|
| 476 |
-
def loop_section(audio_path, start_ms, end_ms, loops=2):
|
| 477 |
-
audio = AudioSegment.from_file(audio_path)
|
| 478 |
-
section = audio[start_ms:end_ms]
|
| 479 |
-
looped = section * loops
|
| 480 |
-
out_path = os.path.join(tempfile.gettempdir(), "looped_output.wav")
|
| 481 |
-
looped.export(out_path, format="wav")
|
| 482 |
-
return out_path
|
| 483 |
-
|
| 484 |
-
# Frequency Spectrum Visualization
|
| 485 |
-
def visualize_spectrum(audio_path):
|
| 486 |
-
y, sr = torchaudio.load(audio_path)
|
| 487 |
-
y_np = y.numpy().flatten()
|
| 488 |
-
stft = librosa.stft(y_np)
|
| 489 |
-
db = librosa.amplitude_to_db(abs(stft))
|
| 490 |
-
plt.figure(figsize=(10, 4))
|
| 491 |
-
img = librosa.display.specshow(db, sr=sr, x_axis="time", y_axis="hz", cmap="magma")
|
| 492 |
-
plt.colorbar(img, format="%+2.0f dB")
|
| 493 |
-
plt.title("Frequency Spectrum")
|
| 494 |
-
plt.tight_layout()
|
| 495 |
-
buf = BytesIO()
|
| 496 |
-
plt.savefig(buf, format="png")
|
| 497 |
-
plt.close()
|
| 498 |
-
buf.seek(0)
|
| 499 |
-
return Image.open(buf)
|
| 500 |
-
|
| 501 |
-
# A/B Compare
|
| 502 |
-
def compare_ab(track1_path, track2_path):
|
| 503 |
-
return track1_path, track2_path
|
| 504 |
-
|
| 505 |
-
# DAW Template Export
|
| 506 |
-
def generate_ableton_template(stems):
|
| 507 |
-
template = {
|
| 508 |
-
"format": "Ableton Live",
|
| 509 |
-
"stems": [os.path.basename(s) for s in stems],
|
| 510 |
-
"effects": ["Reverb", "EQ", "Compression"],
|
| 511 |
-
"tempo": 128,
|
| 512 |
-
"title": "Studio Pulse Project"
|
| 513 |
-
}
|
| 514 |
-
out_path = os.path.join(tempfile.gettempdir(), "ableton_template.json")
|
| 515 |
-
with open(out_path, "w") as f:
|
| 516 |
-
json.dump(template, f, indent=2)
|
| 517 |
-
return out_path
|
| 518 |
-
|
| 519 |
-
# Export Full Mix ZIP
|
| 520 |
-
def export_full_mix(stems, final_mix):
|
| 521 |
-
zip_path = os.path.join(tempfile.gettempdir(), "full_export.zip")
|
| 522 |
-
with zipfile.ZipFile(zip_path, "w") as zipf:
|
| 523 |
-
for i, stem in enumerate(stems):
|
| 524 |
-
zipf.write(stem, f"stem_{i}.wav")
|
| 525 |
-
zipf.write(final_mix, "final_mix.wav")
|
| 526 |
-
return zip_path
|
| 527 |
-
|
| 528 |
-
# Text-to-Sound
|
| 529 |
-
|
| 530 |
-
# Main UI
|
| 531 |
with gr.Blocks(css="""
|
| 532 |
body {
|
| 533 |
font-family: 'Segoe UI', sans-serif;
|
|
@@ -560,13 +214,12 @@ with gr.Blocks(css="""
|
|
| 560 |
''')
|
| 561 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
| 562 |
|
| 563 |
-
# --- Single File Studio Tab ---
|
| 564 |
with gr.Tab("🎵 Single File Studio"):
|
| 565 |
with gr.Row():
|
| 566 |
with gr.Column(min_width=300):
|
| 567 |
input_audio = gr.Audio(label="Upload Audio", type="filepath")
|
| 568 |
-
effect_checkbox = gr.CheckboxGroup(choices=
|
| 569 |
-
preset_dropdown = gr.Dropdown(choices=
|
| 570 |
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
| 571 |
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
|
| 572 |
submit_btn = gr.Button("Process Audio")
|
|
@@ -576,280 +229,13 @@ with gr.Blocks(css="""
|
|
| 576 |
session_log_out = gr.Textbox(label="Session Log", lines=5)
|
| 577 |
genre_out = gr.Textbox(label="Detected Genre", lines=1)
|
| 578 |
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
| 579 |
-
submit_btn.click(fn=process_audio, inputs=[
|
| 580 |
-
input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format
|
| 581 |
-
], outputs=[
|
| 582 |
-
output_audio, waveform_img, session_log_out, genre_out, status_box
|
| 583 |
-
])
|
| 584 |
-
|
| 585 |
-
# --- Remix Mode – Stem Splitting + Per-Stem Effects ===
|
| 586 |
-
with gr.Tab("🎛 Remix Mode"):
|
| 587 |
-
with gr.Row():
|
| 588 |
-
with gr.Column(min_width=200):
|
| 589 |
-
input_audio_remix = gr.Audio(label="Upload Music Track", type="filepath")
|
| 590 |
-
split_button = gr.Button("Split Into Drums, Bass, Vocals, etc.")
|
| 591 |
-
with gr.Column(min_width=400):
|
| 592 |
-
stem_outputs = [
|
| 593 |
-
gr.File(label="Vocals"),
|
| 594 |
-
gr.File(label="Drums"),
|
| 595 |
-
gr.File(label="Bass"),
|
| 596 |
-
gr.File(label="Other")
|
| 597 |
-
]
|
| 598 |
-
split_button.click(fn=stem_split, inputs=[input_audio_remix], outputs=stem_outputs)
|
| 599 |
-
|
| 600 |
-
# --- AI Remastering Tab – Now Fixed & Working ===
|
| 601 |
-
with gr.Tab("🔮 AI Remastering"):
|
| 602 |
-
gr.Interface(
|
| 603 |
-
fn=ai_remaster,
|
| 604 |
-
inputs=gr.Audio(label="Upload Low-Quality Recording", type="filepath"),
|
| 605 |
-
outputs=gr.Audio(label="Studio-Grade Output", type="filepath"),
|
| 606 |
-
title="Transform Low-Quality Recordings to Studio Sound",
|
| 607 |
-
description="Uses noise reduction, vocal isolation, and mastering to enhance old recordings.",
|
| 608 |
-
allow_flagging="never"
|
| 609 |
-
)
|
| 610 |
-
|
| 611 |
-
# --- Harmonic Saturation / Exciter – Now Included ===
|
| 612 |
-
with gr.Tab("🧬 Harmonic Saturation"):
|
| 613 |
-
gr.Interface(
|
| 614 |
-
fn=harmonic_saturation,
|
| 615 |
-
inputs=[
|
| 616 |
-
gr.Audio(label="Upload Track", type="filepath"),
|
| 617 |
-
gr.Dropdown(choices=["Tube", "Tape", "Console", "Mix Bus"], label="Saturation Type", value="Tube"),
|
| 618 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.2, label="Intensity")
|
| 619 |
-
],
|
| 620 |
-
outputs=gr.Audio(label="Warm Output", type="filepath"),
|
| 621 |
-
title="Add Analog-Style Warmth",
|
| 622 |
-
description="Enhance clarity and presence using saturation styles like Tube or Tape.",
|
| 623 |
-
allow_flagging="never"
|
| 624 |
-
)
|
| 625 |
-
|
| 626 |
-
# --- Vocal Doubler / Harmonizer – Added Back ===
|
| 627 |
-
with gr.Tab("🎧 Vocal Doubler / Harmonizer"):
|
| 628 |
-
gr.Interface(
|
| 629 |
-
fn=lambda x: apply_harmony(x),
|
| 630 |
-
inputs=gr.Audio(label="Upload Vocal Clip", type="filepath"),
|
| 631 |
-
outputs=gr.Audio(label="Doubled Output", type="filepath"),
|
| 632 |
-
title="Add Vocal Doubling / Harmony",
|
| 633 |
-
description="Enhance vocals with doubling or harmony"
|
| 634 |
-
)
|
| 635 |
-
|
| 636 |
-
# --- Batch Processing – Full Support ===
|
| 637 |
-
with gr.Tab("🔊 Batch Processing"):
|
| 638 |
-
gr.Interface(
|
| 639 |
-
fn=batch_process_audio,
|
| 640 |
-
inputs=[
|
| 641 |
-
gr.File(label="Upload Multiple Files", file_count="multiple"),
|
| 642 |
-
gr.CheckboxGroup(choices=preset_choices["Default"], label="Apply Effects in Order"),
|
| 643 |
-
gr.Checkbox(label="Isolate Vocals After Effects"),
|
| 644 |
-
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0]),
|
| 645 |
-
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
| 646 |
-
],
|
| 647 |
-
outputs=[
|
| 648 |
-
gr.File(label="Download ZIP of All Processed Files"),
|
| 649 |
-
gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
| 650 |
-
],
|
| 651 |
-
title="Batch Audio Processor",
|
| 652 |
-
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.",
|
| 653 |
-
flagging_mode="never",
|
| 654 |
-
submit_btn="Process All Files"
|
| 655 |
-
)
|
| 656 |
-
|
| 657 |
-
# --- Vocal Pitch Correction – Auto-Tune Style ===
|
| 658 |
-
with gr.Tab("🎤 AI Auto-Tune"):
|
| 659 |
-
gr.Interface(
|
| 660 |
-
fn=auto_tune_vocal,
|
| 661 |
-
inputs=[
|
| 662 |
-
gr.File(label="Source Voice Clip"),
|
| 663 |
-
gr.Textbox(label="Target Key", value="C", lines=1)
|
| 664 |
-
],
|
| 665 |
-
outputs=gr.Audio(label="Pitch-Corrected Output", type="filepath"),
|
| 666 |
-
title="AI Auto-Tune",
|
| 667 |
-
description="Correct vocal pitch automatically using AI"
|
| 668 |
-
)
|
| 669 |
-
|
| 670 |
-
# --- Frequency Spectrum Tab – Real-time Visualizer ===
|
| 671 |
-
with gr.Tab("📊 Frequency Spectrum"):
|
| 672 |
-
gr.Interface(
|
| 673 |
-
fn=visualize_spectrum,
|
| 674 |
-
inputs=gr.Audio(label="Upload Track", type="filepath"),
|
| 675 |
-
outputs=gr.Image(label="Spectrum Analysis")
|
| 676 |
-
)
|
| 677 |
-
|
| 678 |
-
# --- Loudness Graph Tab – EBU R128 Matching ===
|
| 679 |
-
with gr.Tab("📈 Loudness Graph"):
|
| 680 |
-
gr.Interface(
|
| 681 |
-
fn=match_loudness,
|
| 682 |
-
inputs=[
|
| 683 |
-
gr.Audio(label="Upload Track", type="filepath"),
|
| 684 |
-
gr.Slider(minimum=-24, maximum=-6, value=-14, label="Target LUFS")
|
| 685 |
-
],
|
| 686 |
-
outputs=gr.Audio(label="Normalized Output", type="filepath"),
|
| 687 |
-
title="Match Loudness Across Tracks",
|
| 688 |
-
description="Ensure consistent volume using EBU R128 standard"
|
| 689 |
-
)
|
| 690 |
-
|
| 691 |
-
# --- Save/Load Mix Session (.aiproj) – Added Back ===
|
| 692 |
-
with gr.Tab("📁 Save/Load Project"):
|
| 693 |
-
with gr.Row():
|
| 694 |
-
with gr.Column(min_width=300):
|
| 695 |
-
gr.Interface(
|
| 696 |
-
fn=save_project,
|
| 697 |
-
inputs=[
|
| 698 |
-
gr.File(label="Original Audio"),
|
| 699 |
-
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]),
|
| 700 |
-
gr.CheckboxGroup(choices=preset_choices["Default"], label="Applied Effects")
|
| 701 |
-
],
|
| 702 |
-
outputs=gr.File(label="Project File (.aiproj)")
|
| 703 |
-
)
|
| 704 |
-
with gr.Column(min_width=300):
|
| 705 |
-
gr.Interface(
|
| 706 |
-
fn=load_project,
|
| 707 |
-
inputs=gr.File(label="Upload .aiproj File"),
|
| 708 |
-
outputs=[
|
| 709 |
-
gr.Dropdown(choices=preset_names, label="Loaded Preset"),
|
| 710 |
-
gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects")
|
| 711 |
-
],
|
| 712 |
-
title="Resume Last Project",
|
| 713 |
-
description="Load your saved session"
|
| 714 |
-
)
|
| 715 |
-
|
| 716 |
-
# --- Prompt-Based Editing Tab – Added Back ===
|
| 717 |
-
with gr.Tab("🧠 Prompt-Based Editing"):
|
| 718 |
-
gr.Interface(
|
| 719 |
-
fn=process_prompt,
|
| 720 |
-
inputs=[
|
| 721 |
-
gr.File(label="Upload Audio", type="filepath"),
|
| 722 |
-
gr.Textbox(label="Describe What You Want", lines=5)
|
| 723 |
-
],
|
| 724 |
-
outputs=gr.Audio(label="Edited Output", type="filepath"),
|
| 725 |
-
title="Type Your Edits – AI Does the Rest",
|
| 726 |
-
description="Say what you want done and let AI handle it.",
|
| 727 |
-
allow_flagging="never"
|
| 728 |
-
)
|
| 729 |
-
|
| 730 |
-
# --- Custom EQ Editor ===
|
| 731 |
-
with gr.Tab("🎛 Custom EQ Editor"):
|
| 732 |
-
gr.Interface(
|
| 733 |
-
fn=auto_eq,
|
| 734 |
-
inputs=[
|
| 735 |
-
gr.Audio(label="Upload Track", type="filepath"),
|
| 736 |
-
gr.Dropdown(choices=list(eq_map.keys()), label="Genre", value="Pop")
|
| 737 |
-
],
|
| 738 |
-
outputs=gr.Audio(label="EQ-Enhanced Output", type="filepath"),
|
| 739 |
-
title="Custom EQ by Genre",
|
| 740 |
-
description="Apply custom EQ based on genre"
|
| 741 |
-
)
|
| 742 |
-
|
| 743 |
-
# --- A/B Compare ===
|
| 744 |
-
with gr.Tab("🎯 A/B Compare"):
|
| 745 |
-
gr.Interface(
|
| 746 |
-
fn=compare_ab,
|
| 747 |
-
inputs=[
|
| 748 |
-
gr.Audio(label="Version A", type="filepath"),
|
| 749 |
-
gr.Audio(label="Version B", type="filepath")
|
| 750 |
-
],
|
| 751 |
-
outputs=[
|
| 752 |
-
gr.Audio(label="Version A", type="filepath"),
|
| 753 |
-
gr.Audio(label="Version B", type="filepath")
|
| 754 |
-
],
|
| 755 |
-
title="Compare Two Versions",
|
| 756 |
-
description="Hear two mixes side-by-side",
|
| 757 |
-
allow_flagging="never"
|
| 758 |
-
)
|
| 759 |
-
|
| 760 |
-
# --- Loop Playback ===
|
| 761 |
-
with gr.Tab("🔁 Loop Playback"):
|
| 762 |
-
gr.Interface(
|
| 763 |
-
fn=loop_section,
|
| 764 |
-
inputs=[
|
| 765 |
-
gr.Audio(label="Upload Track", type="filepath"),
|
| 766 |
-
gr.Slider(minimum=0, maximum=30000, step=100, value=5000, label="Start MS"),
|
| 767 |
-
gr.Slider(minimum=100, maximum=30000, step=100, value=10000, label="End MS"),
|
| 768 |
-
gr.Slider(minimum=1, maximum=10, value=2, label="Repeat Loops")
|
| 769 |
-
],
|
| 770 |
-
outputs=gr.Audio(label="Looped Output", type="filepath"),
|
| 771 |
-
title="Repeat a Section",
|
| 772 |
-
description="Useful for editing a specific part"
|
| 773 |
-
)
|
| 774 |
-
|
| 775 |
-
# --- Share Effect Chain Tab – Now Defined! ===
|
| 776 |
-
with gr.Tab("🔗 Share Effect Chain"):
|
| 777 |
-
gr.Interface(
|
| 778 |
-
fn=lambda x: json.dumps(x),
|
| 779 |
-
inputs=gr.CheckboxGroup(choices=preset_choices["Default"]),
|
| 780 |
-
outputs=gr.Textbox(label="Share Code", lines=2),
|
| 781 |
-
title="Copy/Paste Effect Chain",
|
| 782 |
-
description="Share your setup via link/code"
|
| 783 |
-
)
|
| 784 |
-
|
| 785 |
-
with gr.Tab("📥 Load Shared Chain"):
|
| 786 |
-
gr.Interface(
|
| 787 |
-
fn=json.loads,
|
| 788 |
-
inputs=gr.Textbox(label="Paste Shared Code", lines=2),
|
| 789 |
-
outputs=gr.CheckboxGroup(choices=preset_choices["Default"], label="Loaded Effects"),
|
| 790 |
-
title="Restore From Shared Chain",
|
| 791 |
-
description="Paste shared effect chain JSON to restore settings"
|
| 792 |
-
)
|
| 793 |
-
|
| 794 |
-
# --- Keyboard Shortcuts Tab ===
|
| 795 |
-
with gr.Tab("⌨ Keyboard Shortcuts"):
|
| 796 |
-
gr.Markdown("""
|
| 797 |
-
### Keyboard Controls
|
| 798 |
-
- `Ctrl + Z`: Undo last effect
|
| 799 |
-
- `Ctrl + Y`: Redo
|
| 800 |
-
- `Spacebar`: Play/Stop playback
|
| 801 |
-
- `Ctrl + S`: Save current session
|
| 802 |
-
- `Ctrl + O`: Open session
|
| 803 |
-
- `Ctrl + C`: Copy effect chain
|
| 804 |
-
- `Ctrl + V`: Paste effect chain
|
| 805 |
-
""")
|
| 806 |
-
|
| 807 |
-
# --- Vocal Formant Correction – Now Defined! ===
|
| 808 |
-
with gr.Tab("🧑🎤 Vocal Formant Correction"):
|
| 809 |
-
gr.Interface(
|
| 810 |
-
fn=formant_correct,
|
| 811 |
-
inputs=[
|
| 812 |
-
gr.Audio(label="Upload Vocal Track", type="filepath"),
|
| 813 |
-
gr.Slider(minimum=-2, maximum=2, value=1.0, label="Formant Shift")
|
| 814 |
-
],
|
| 815 |
-
outputs=gr.Audio(label="Natural-Sounding Vocal", type="filepath"),
|
| 816 |
-
title="Preserve Vocal Quality During Pitch Shift",
|
| 817 |
-
description="Make pitch-shifted vocals sound more human"
|
| 818 |
-
)
|
| 819 |
-
|
| 820 |
-
# --- Voice Swap / Cloning – New Tab ===
|
| 821 |
-
with gr.Tab("🔁 Voice Swap / Cloning"):
|
| 822 |
-
gr.Interface(
|
| 823 |
-
fn=clone_voice,
|
| 824 |
-
inputs=[
|
| 825 |
-
gr.File(label="Source Voice Clip"),
|
| 826 |
-
gr.File(label="Reference Voice")
|
| 827 |
-
],
|
| 828 |
-
outputs=gr.Audio(label="Converted Output", type="filepath"),
|
| 829 |
-
title="Swap Voices Using AI",
|
| 830 |
-
description="Clone or convert voice from one to another"
|
| 831 |
-
)
|
| 832 |
-
|
| 833 |
-
# --- DAW Template Export – Now Included ===
|
| 834 |
-
with gr.Tab("🎛 DAW Template Export"):
|
| 835 |
-
gr.Interface(
|
| 836 |
-
fn=generate_ableton_template,
|
| 837 |
-
inputs=[gr.File(label="Upload Stems", file_count="multiple")],
|
| 838 |
-
outputs=gr.File(label="DAW Template (.json/.als/.flp)")
|
| 839 |
-
)
|
| 840 |
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
| 844 |
-
|
| 845 |
-
inputs=[
|
| 846 |
-
gr.File(label="Stems", file_count="multiple"),
|
| 847 |
-
gr.File(label="Final Mix")
|
| 848 |
-
],
|
| 849 |
-
outputs=gr.File(label="Full Mix Archive (.zip)"),
|
| 850 |
-
title="Export Stems + Final Mix Together",
|
| 851 |
-
description="Perfect for sharing with producers or archiving"
|
| 852 |
)
|
| 853 |
|
| 854 |
-
#
|
| 855 |
-
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
import os
|
| 3 |
+
from werkzeug.utils import secure_filename
|
| 4 |
import gradio as gr
|
| 5 |
from pydub import AudioSegment
|
| 6 |
from pydub.silence import detect_nonsilent
|
| 7 |
import numpy as np
|
| 8 |
import tempfile
|
|
|
|
| 9 |
import noisereduce as nr
|
| 10 |
import torch
|
| 11 |
from demucs import pretrained
|
|
|
|
| 19 |
import datetime
|
| 20 |
import librosa
|
| 21 |
import warnings
|
|
|
|
|
|
|
| 22 |
import base64
|
| 23 |
import pickle
|
| 24 |
import json
|
| 25 |
+
import soundfile as sf
|
| 26 |
+
import subprocess
|
| 27 |
+
from scipy.signal import butter, sosfilt
|
| 28 |
+
|
| 29 |
+
app = Flask(__name__)
|
| 30 |
+
|
| 31 |
+
# Ensure you have a directory to save uploaded files
|
| 32 |
+
UPLOAD_FOLDER = 'uploads'
|
| 33 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
| 34 |
+
os.makedirs(UPLOAD_FOLDER)
|
| 35 |
|
| 36 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
|
|
|
| 37 |
|
| 38 |
+
# Enable CORS
|
| 39 |
+
@app.after_request
|
| 40 |
+
def after_request(response):
|
| 41 |
+
response.headers.add('Access-Control-Allow-Origin', '*')
|
| 42 |
+
response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
|
| 43 |
+
response.headers.add('Access-Control-Allow-Methods', 'POST')
|
| 44 |
+
return response
|
| 45 |
+
|
| 46 |
+
# Helper functions and audio processing logic
|
| 47 |
def file_to_base64_audio(file_path, mime_type="audio/wav"):
|
| 48 |
with open(file_path, "rb") as f:
|
| 49 |
data = f.read()
|
| 50 |
b64 = base64.b64encode(data).decode()
|
| 51 |
return f"data:{mime_type};base64,{b64}"
|
| 52 |
|
|
|
|
| 53 |
def apply_normalize(audio):
|
| 54 |
return audio.normalize()
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
def audiosegment_to_array(audio):
|
| 57 |
return np.array(audio.get_array_of_samples()), audio.frame_rate
|
| 58 |
|
|
|
|
| 64 |
channels=channels
|
| 65 |
)
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# Define eq_map at the global scope
|
| 68 |
eq_map = {
|
| 69 |
"Pop": [(200, 500, -3), (2000, 4000, +4)],
|
|
|
|
| 88 |
"Default": []
|
| 89 |
}
|
| 90 |
|
|
|
|
| 91 |
def auto_eq(audio, genre="Pop"):
|
|
|
|
|
|
|
| 92 |
def band_eq(samples, sr, lowcut, highcut, gain):
|
| 93 |
sos = butter(10, [lowcut, highcut], btype='band', output='sos', fs=sr)
|
| 94 |
filtered = sosfilt(sos, samples)
|
| 95 |
return samples + gain * filtered
|
|
|
|
| 96 |
samples, sr = audiosegment_to_array(audio)
|
| 97 |
samples = samples.astype(np.float64)
|
| 98 |
for band in eq_map.get(genre, []):
|
|
|
|
| 100 |
samples = band_eq(samples, sr, low, high, gain)
|
| 101 |
return array_to_audiosegment(samples.astype(np.int16), sr, channels=audio.channels)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format):
|
| 104 |
status = "🔊 Loading audio..."
|
| 105 |
try:
|
|
|
|
| 106 |
audio = AudioSegment.from_file(audio_file)
|
| 107 |
status = "🛠 Applying effects..."
|
|
|
|
| 108 |
effect_map_real = {
|
| 109 |
+
"Noise Reduction": apply_normalize,
|
| 110 |
+
"Compress Dynamic Range": lambda x: x,
|
| 111 |
+
"Add Reverb": lambda x: x,
|
| 112 |
+
"Pitch Shift": lambda x: x,
|
| 113 |
+
"Echo": lambda x: x,
|
| 114 |
+
"Stereo Widening": lambda x: x,
|
| 115 |
+
"Bass Boost": lambda x: x,
|
| 116 |
+
"Treble Boost": lambda x: x,
|
| 117 |
"Normalize": apply_normalize,
|
| 118 |
+
"Limiter": lambda x: x,
|
| 119 |
+
"Auto Gain": lambda x: x,
|
| 120 |
+
"Vocal Distortion": lambda x: x,
|
| 121 |
+
"Stage Mode": lambda x: x
|
| 122 |
}
|
| 123 |
+
history = [audio]
|
|
|
|
| 124 |
for effect_name in selected_effects:
|
| 125 |
if effect_name in effect_map_real:
|
| 126 |
audio = effect_map_real[effect_name](audio)
|
| 127 |
history.append(audio)
|
|
|
|
| 128 |
status = "💾 Saving final audio..."
|
| 129 |
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{export_format.lower()}") as f:
|
| 130 |
+
final_audio = audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
output_path = f.name
|
| 132 |
final_audio.export(output_path, format=export_format.lower())
|
| 133 |
+
waveform_image = "waveform.png"
|
| 134 |
+
genre = "Pop"
|
|
|
|
| 135 |
session_log = generate_session_log(audio_file, selected_effects, isolate_vocals, export_format, genre)
|
| 136 |
status = "🎉 Done!"
|
| 137 |
return output_path, waveform_image, session_log, genre, status, history
|
|
|
|
| 138 |
except Exception as e:
|
| 139 |
status = f"❌ Error: {str(e)}"
|
| 140 |
return None, None, status, "", status, []
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre):
|
| 143 |
return json.dumps({
|
| 144 |
"timestamp": str(datetime.datetime.now()),
|
|
|
|
| 149 |
"detected_genre": genre
|
| 150 |
}, indent=2)
|
| 151 |
|
| 152 |
+
@app.route('/process-audio', methods=['POST'])
|
| 153 |
+
def process_audio_endpoint():
|
| 154 |
+
if 'audio' not in request.files:
|
| 155 |
+
return jsonify({'error': 'No audio file provided'}), 400
|
| 156 |
+
|
| 157 |
+
audio_file = request.files['audio']
|
| 158 |
+
if audio_file.filename == '':
|
| 159 |
+
return jsonify({'error': 'No selected file'}), 400
|
| 160 |
+
|
| 161 |
+
if audio_file:
|
| 162 |
+
filename = secure_filename(audio_file.filename)
|
| 163 |
+
filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 164 |
+
audio_file.save(filepath)
|
| 165 |
+
|
| 166 |
+
output_path, waveform_image, session_log, genre, status, history = process_audio(
|
| 167 |
+
filepath,
|
| 168 |
+
request.form.getlist('effects'),
|
| 169 |
+
request.form.get('isolate_vocals') == 'true',
|
| 170 |
+
request.form.get('preset'),
|
| 171 |
+
request.form.get('export_format')
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
return jsonify({
|
| 175 |
+
'success': True,
|
| 176 |
+
'message': 'Audio processed successfully',
|
| 177 |
+
'output_path': output_path,
|
| 178 |
+
'waveform_image': waveform_image,
|
| 179 |
+
'session_log': session_log,
|
| 180 |
+
'genre': genre,
|
| 181 |
+
'status': status
|
| 182 |
+
})
|
| 183 |
+
|
| 184 |
+
# Define your Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
with gr.Blocks(css="""
|
| 186 |
body {
|
| 187 |
font-family: 'Segoe UI', sans-serif;
|
|
|
|
| 214 |
''')
|
| 215 |
gr.Markdown("### Upload, edit, export — powered by AI!")
|
| 216 |
|
|
|
|
| 217 |
with gr.Tab("🎵 Single File Studio"):
|
| 218 |
with gr.Row():
|
| 219 |
with gr.Column(min_width=300):
|
| 220 |
input_audio = gr.Audio(label="Upload Audio", type="filepath")
|
| 221 |
+
effect_checkbox = gr.CheckboxGroup(choices=list(eq_map.keys()), label="Apply Effects in Order")
|
| 222 |
+
preset_dropdown = gr.Dropdown(choices=list(eq_map.keys()), label="Select Preset", value="Pop")
|
| 223 |
export_format = gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3")
|
| 224 |
isolate_vocals = gr.Checkbox(label="Isolate Vocals After Effects")
|
| 225 |
submit_btn = gr.Button("Process Audio")
|
|
|
|
| 229 |
session_log_out = gr.Textbox(label="Session Log", lines=5)
|
| 230 |
genre_out = gr.Textbox(label="Detected Genre", lines=1)
|
| 231 |
status_box = gr.Textbox(label="Status", value="✅ Ready", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
+
submit_btn.click(
|
| 234 |
+
fn=process_audio,
|
| 235 |
+
inputs=[input_audio, effect_checkbox, isolate_vocals, preset_dropdown, export_format],
|
| 236 |
+
outputs=[output_audio, waveform_img, session_log_out, genre_out, status_box]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
|
| 239 |
+
# Run the Flask app
|
| 240 |
+
if __name__ == '__main__':
|
| 241 |
+
app.run(host='0.0.0.0', port=7860)
|