Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pydub import AudioSegment | |
import numpy as np | |
import tempfile | |
import os | |
import noisereduce as nr | |
import json | |
import torch | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
import torchaudio | |
from pathlib import Path | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
from PIL import Image | |
import zipfile | |
import datetime | |
import librosa | |
import joblib | |
import warnings | |
from faster_whisper import WhisperModel | |
from mutagen.mp3 import MP3 | |
from mutagen.id3 import ID3, TIT2, TPE1, TALB, TYER | |
# Suppress warnings for cleaner logs | |
warnings.filterwarnings("ignore") | |
# === Helper Functions === | |
def audiosegment_to_array(audio): | |
return np.array(audio.get_array_of_samples()), audio.frame_rate | |
def array_to_audiosegment(samples, frame_rate, channels=1): | |
return AudioSegment( | |
samples.tobytes(), | |
frame_rate=frame_rate, | |
sample_width=samples.dtype.itemsize, | |
channels=channels | |
) | |
# === Effect Functions === | |
def apply_normalize(audio): | |
return audio.normalize() | |
def apply_noise_reduction(audio): | |
samples, frame_rate = audiosegment_to_array(audio) | |
reduced = nr.reduce_noise(y=samples, sr=frame_rate) | |
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels) | |
def apply_compression(audio): | |
return audio.compress_dynamic_range() | |
def apply_reverb(audio): | |
reverb = audio - 10 | |
return audio.overlay(reverb, position=1000) | |
def apply_pitch_shift(audio, semitones=-2): | |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12))) | |
samples = np.array(audio.get_array_of_samples()) | |
resampled = np.interp( | |
np.arange(0, len(samples), 2 ** (semitones / 12)), | |
np.arange(len(samples)), | |
samples | |
).astype(np.int16) | |
return AudioSegment( | |
resampled.tobytes(), | |
frame_rate=new_frame_rate, | |
sample_width=audio.sample_width, | |
channels=audio.channels | |
) | |
def apply_echo(audio, delay_ms=500, decay=0.5): | |
echo = audio - 10 | |
return audio.overlay(echo, position=delay_ms) | |
def apply_stereo_widen(audio, pan_amount=0.3): | |
left = audio.pan(-pan_amount) | |
right = audio.pan(pan_amount) | |
return AudioSegment.from_mono_audiosegments(left, right) | |
def apply_bass_boost(audio, gain=10): | |
return audio.low_pass_filter(100).apply_gain(gain) | |
def apply_treble_boost(audio, gain=10): | |
return audio.high_pass_filter(4000).apply_gain(gain) | |
# === Vocal Isolation Helpers === | |
def load_track_local(path, sample_rate, channels=2): | |
sig, rate = torchaudio.load(path) | |
if rate != sample_rate: | |
sig = torchaudio.functional.resample(sig, rate, sample_rate) | |
if channels == 1: | |
sig = sig.mean(0) | |
return sig | |
def save_track(path, wav, sample_rate): | |
path = Path(path) | |
torchaudio.save(str(path), wav, sample_rate) | |
def apply_vocal_isolation(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
ref = wav.mean(0) | |
wav -= ref[:, None] | |
sources = apply_model(model, wav[None])[0] | |
wav += ref[:, None] | |
vocal_track = sources[3].cpu() | |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav") | |
save_track(out_path, vocal_track, model.samplerate) | |
return out_path | |
# === Stem Splitting (Drums, Bass, Other, Vocals) === | |
def stem_split(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
sources = apply_model(model, wav[None])[0] | |
output_dir = tempfile.mkdtemp() | |
stem_paths = [] | |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']): | |
path = os.path.join(output_dir, f"{name}.wav") | |
save_track(path, sources[i].cpu(), model.samplerate) | |
stem_paths.append(path) | |
return [gr.File(value=path) for path in stem_paths] | |
# === Preset Loader with Fallback === | |
def load_presets(): | |
try: | |
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")] | |
presets = {} | |
for f in preset_files: | |
path = os.path.join("presets", f) | |
try: | |
with open(path, "r") as infile: | |
data = json.load(infile) | |
if "name" in data and "effects" in data: | |
presets[data["name"]] = data["effects"] | |
except json.JSONDecodeError: | |
print(f"Invalid JSON: {f}") | |
return presets | |
except FileNotFoundError: | |
print("Presets folder not found") | |
return {} | |
preset_choices = load_presets() | |
if not preset_choices: | |
preset_choices = { | |
"Default": [], | |
"Clean Podcast": ["Noise Reduction", "Normalize"], | |
"Music Remix": ["Bass Boost", "Stereo Widening"] | |
} | |
preset_names = list(preset_choices.keys()) | |
# === Waveform + Spectrogram Generator === | |
def show_waveform(audio_file): | |
try: | |
audio = AudioSegment.from_file(audio_file) | |
samples = np.array(audio.get_array_of_samples()) | |
plt.figure(figsize=(10, 2)) | |
plt.plot(samples[:10000], color="blue") | |
plt.axis("off") | |
buf = BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
except Exception as e: | |
return None | |
def detect_genre(audio_path): | |
try: | |
y, sr = torchaudio.load(audio_path) | |
mfccs = librosa.feature.mfcc(y=y.numpy().flatten(), sr=sr, n_mfcc=13).mean(axis=1).reshape(1, -1) | |
return "Speech" | |
except Exception: | |
return "Unknown" | |
# === Session Info Export === | |
def generate_session_log(audio_path, effects, isolate_vocals, export_format, genre): | |
log = { | |
"timestamp": str(datetime.datetime.now()), | |
"filename": os.path.basename(audio_path), | |
"effects_applied": effects, | |
"isolate_vocals": isolate_vocals, | |
"export_format": export_format, | |
"detected_genre": genre | |
} | |
return json.dumps(log, indent=2) | |
# === Main Processing Function with Status Updates === | |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format): | |
status = "π Loading audio..." | |
try: | |
audio = AudioSegment.from_file(audio_file) | |
status = "π Applying effects..." | |
effect_map = { | |
"Noise Reduction": apply_noise_reduction, | |
"Compress Dynamic Range": apply_compression, | |
"Add Reverb": apply_reverb, | |
"Pitch Shift": lambda x: apply_pitch_shift(x), | |
"Echo": apply_echo, | |
"Stereo Widening": apply_stereo_widen, | |
"Bass Boost": apply_bass_boost, | |
"Treble Boost": apply_treble_boost, | |
"Normalize": apply_normalize, | |
} | |
effects_to_apply = preset_choices.get(preset_name, selected_effects) | |
for effect_name in effects_to_apply: | |
if effect_name in effect_map: | |
audio = effect_map[effect_name](audio) | |
status = "πΎ Saving final audio..." | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
if isolate_vocals: | |
temp_input = os.path.join(tempfile.gettempdir(), "input.wav") | |
audio.export(temp_input, format="wav") | |
vocal_path = apply_vocal_isolation(temp_input) | |
final_audio = AudioSegment.from_wav(vocal_path) | |
else: | |
final_audio = audio | |
output_path = f.name | |
final_audio.export(output_path, format=export_format.lower()) | |
waveform_image = show_waveform(output_path) | |
genre = detect_genre(output_path) | |
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format, genre) | |
status = "π Done!" | |
return output_path, waveform_image, session_log, genre, status | |
except Exception as e: | |
status = f"β Error: {str(e)}" | |
return None, None, status, "", status | |
# === Batch Processing Function === | |
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format): | |
status = "π Loading files..." | |
try: | |
output_dir = tempfile.mkdtemp() | |
results = [] | |
session_logs = [] | |
for file in files: | |
processed_path, _, log, _, _ = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format) | |
results.append(processed_path) | |
session_logs.append(log) | |
zip_path = os.path.join(output_dir, "batch_output.zip") | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
for i, res in enumerate(results): | |
filename = f"processed_{i}.{export_format.lower()}" | |
zipf.write(res, filename) | |
zipf.writestr(f"session_info_{i}.json", session_logs[i]) | |
return zip_path, "π¦ ZIP created successfully!" | |
except Exception as e: | |
return None, f"β Batch processing failed: {str(e)}" | |
# === Whisper Transcription Tab === | |
whisper_model = WhisperModel("base") | |
def transcribe_audio(audio_path): | |
segments, info = whisper_model.transcribe(audio_path, beam_size=5) | |
text = " ".join([seg.text for seg in segments]) | |
return text | |
# === TTS Tab === | |
from TTS.api import TTS | |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False) | |
def generate_tts(text): | |
out_path = os.path.join(tempfile.gettempdir(), "tts_output.wav") | |
tts.tts_to_file(text=text, file_path=out_path) | |
return out_path | |
# === Analyze Audio Stats === | |
def analyze_audio(audio_path): | |
y, sr = torchaudio.load(audio_path) | |
rms = np.mean(librosa.feature.rms(y=y.numpy().flatten())) | |
tempo, _ = librosa.beat.beat_track(y=y.numpy().flatten(), sr=sr) | |
silence_ratio = np.mean(np.abs(y.numpy()) < 0.01) | |
plt.figure(figsize=(10, 4)) | |
plt.plot(y.numpy().flatten(), color="lightblue") | |
plt.title("Loudness Over Time") | |
plt.tight_layout() | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
plt.close() | |
image = Image.open(buf) | |
stats = { | |
"rms_loudness": float(rms), | |
"silence_ratio": float(silence_ratio), | |
"tempo_bpm": int(tempo) | |
} | |
return stats, image | |
# === Mix Two Tracks === | |
def mix_tracks(track1, track2, volume_offset=0): | |
a1 = AudioSegment.from_file(track1) | |
a2 = AudioSegment.from_file(track2) | |
mixed = a1.overlay(a2 - volume_offset) | |
out_path = os.path.join(tempfile.gettempdir(), "mixed.wav") | |
mixed.export(out_path, format="wav") | |
return out_path | |
# === Save/Load Project File (.aiproj) === | |
def save_project(audio_path, preset_name, effects): | |
project_data = { | |
"audio": AudioSegment.from_file(audio_path).raw_data, | |
"preset": preset_name, | |
"effects": effects | |
} | |
out_path = os.path.join(tempfile.gettempdir(), "project.aiproj") | |
with open(out_path, "wb") as f: | |
pickle.dump(project_data, f) | |
return out_path | |
# UI Setup | |
effect_options = [ | |
"Noise Reduction", | |
"Compress Dynamic Range", | |
"Add Reverb", | |
"Pitch Shift", | |
"Echo", | |
"Stereo Widening", | |
"Bass Boost", | |
"Treble Boost", | |
"Normalize" | |
] | |
with gr.Blocks(title="AI Audio Studio", css="style.css") as demo: | |
gr.Markdown("## π§ Ultimate AI Audio Studio\nUpload, edit, export β powered by AI!") | |
# --- Single File Studio --- | |
with gr.Tab("π΅ Single File Studio"): | |
gr.Interface( | |
fn=process_audio, | |
inputs=[ | |
gr.Audio(label="Upload Audio", type="filepath"), | |
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=[ | |
gr.Audio(label="Processed Audio", type="filepath"), | |
gr.Image(label="Waveform Preview"), | |
gr.Textbox(label="Session Log (JSON)", lines=5), | |
gr.Textbox(label="Detected Genre", lines=1), | |
gr.Textbox(label="Status", value="β Ready", lines=1) | |
], | |
title="Edit One File at a Time", | |
description="Apply effects, preview waveform, and get full session log.", | |
flagging_mode="never", | |
submit_btn="Process Audio", | |
clear_btn=None | |
) | |
# --- Batch Processing --- | |
with gr.Tab("π Batch Processing"): | |
gr.Interface( | |
fn=batch_process_audio, | |
inputs=[ | |
gr.File(label="Upload Multiple Files", file_count="multiple"), | |
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=[ | |
gr.File(label="Download ZIP of All Processed Files"), | |
gr.Textbox(label="Status", value="β Ready", lines=1) | |
], | |
title="Batch Audio Processor", | |
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.", | |
flagging_mode="never", | |
submit_btn="Process All Files", | |
clear_btn=None | |
) | |
# --- Remix Mode --- | |
with gr.Tab("π Remix Mode"): | |
gr.Interface( | |
fn=stem_split, | |
inputs=gr.Audio(label="Upload Music Track", type="filepath"), | |
outputs=[ | |
gr.File(label="Vocals"), | |
gr.File(label="Drums"), | |
gr.File(label="Bass"), | |
gr.File(label="Other") | |
], | |
title="Split Into Drums, Bass, Vocals, and More", | |
description="Use AI to separate musical elements like vocals, drums, and bass.", | |
flagging_mode="never", | |
clear_btn=None | |
) | |
# --- Transcribe & Edit --- | |
with gr.Tab("π Transcribe & Edit"): | |
gr.Interface( | |
fn=transcribe_audio, | |
inputs=gr.Audio(label="Upload Audio", type="filepath"), | |
outputs=gr.Textbox(label="Transcribed Text", lines=10), | |
title="Transcribe & Edit Spoken Content", | |
description="Convert voice to text, then edit the script before exporting again." | |
) | |
# --- TTS Voice Generator --- | |
with gr.Tab("π¬ TTS Voice Generator"): | |
gr.Interface( | |
fn=generate_tts, | |
inputs=gr.Textbox(label="Enter Text", lines=5), | |
outputs=gr.Audio(label="Generated Speech", type="filepath"), | |
title="Text-to-Speech Generator", | |
description="Type anything and turn it into natural-sounding speech." | |
) | |
# --- Audio Analysis Dashboard --- | |
with gr.Tab("π Audio Analysis"): | |
gr.Interface( | |
fn=analyze_audio, | |
inputs=gr.Audio(label="Upload Track", type="filepath"), | |
outputs=[ | |
gr.JSON(label="Audio Stats"), | |
gr.Image(label="Waveform Graph") | |
], | |
title="View Loudness, BPM, Silence, and More", | |
description="Analyze audio loudness, tempo, and frequency content." | |
) | |
# --- Mix Two Tracks --- | |
with gr.Tab("π Mix Two Tracks"): | |
gr.Interface( | |
fn=mix_tracks, | |
inputs=[ | |
gr.File(label="Main Track"), | |
gr.File(label="Background Track"), | |
gr.Slider(minimum=-10, maximum=10, value=0, label="Volume Offset (dB)") | |
], | |
outputs=gr.File(label="Mixed Output"), | |
title="Overlay Two Tracks", | |
description="Mix or subtract two audio files." | |
) | |
# --- Load/Save Project --- | |
with gr.Tab("π Save/Load Project"): | |
gr.Interface( | |
fn=save_project, | |
inputs=[ | |
gr.File(label="Original Audio"), | |
gr.Dropdown(choices=preset_names, label="Used Preset", value=preset_names[0]), | |
gr.CheckboxGroup(choices=effect_options, label="Applied Effects") | |
], | |
outputs=gr.File(label="Project File (.aiproj)"), | |
title="Save Everything Together", | |
description="Save your session, effects, and settings in one file to reuse later." | |
) | |
demo.launch() |