Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pydub import AudioSegment | |
import numpy as np | |
import tempfile | |
import os | |
import noisereduce as nr | |
import json | |
import torch | |
from demucs import pretrained | |
from demucs.apply import apply_model | |
import torchaudio | |
from pathlib import Path | |
import matplotlib.pyplot as plt | |
from io import BytesIO | |
from PIL import Image | |
import zipfile | |
import datetime | |
# === Helper Functions === | |
def audiosegment_to_array(audio): | |
return np.array(audio.get_array_of_samples()), audio.frame_rate | |
def array_to_audiosegment(samples, frame_rate, channels=1): | |
return AudioSegment( | |
samples.tobytes(), | |
frame_rate=frame_rate, | |
sample_width=samples.dtype.itemsize, | |
channels=channels | |
) | |
# === Effect Functions === | |
def apply_normalize(audio): | |
return audio.normalize() | |
def apply_noise_reduction(audio): | |
samples, frame_rate = audiosegment_to_array(audio) | |
reduced = nr.reduce_noise(y=samples, sr=frame_rate) | |
return array_to_audiosegment(reduced, frame_rate, channels=audio.channels) | |
def apply_compression(audio): | |
return audio.compress_dynamic_range() | |
def apply_reverb(audio): | |
reverb = audio - 10 | |
return audio.overlay(reverb, position=1000) | |
def apply_pitch_shift(audio, semitones=-2): | |
new_frame_rate = int(audio.frame_rate * (2 ** (semitones / 12))) | |
samples = np.array(audio.get_array_of_samples()) | |
resampled = np.interp( | |
np.arange(0, len(samples), 2 ** (semitones / 12)), | |
np.arange(len(samples)), | |
samples | |
).astype(np.int16) | |
return AudioSegment( | |
resampled.tobytes(), | |
frame_rate=new_frame_rate, | |
sample_width=audio.sample_width, | |
channels=audio.channels | |
) | |
def apply_echo(audio, delay_ms=500, decay=0.5): | |
echo = audio - 10 | |
return audio.overlay(echo, position=delay_ms) | |
def apply_stereo_widen(audio, pan_amount=0.3): | |
left = audio.pan(-pan_amount) | |
right = audio.pan(pan_amount) | |
return AudioSegment.from_mono_audiosegments(left, right) | |
def apply_bass_boost(audio, gain=10): | |
return audio.low_pass_filter(100).apply_gain(gain) | |
def apply_treble_boost(audio, gain=10): | |
return audio.high_pass_filter(4000).apply_gain(gain) | |
# === Vocal Isolation Helpers === | |
def load_track_local(path, sample_rate, channels=2): | |
sig, rate = torchaudio.load(path) | |
if rate != sample_rate: | |
sig = torchaudio.functional.resample(sig, rate, sample_rate) | |
if channels == 1: | |
sig = sig.mean(0) | |
return sig | |
def save_track(path, wav, sample_rate): | |
path = Path(path) | |
torchaudio.save(str(path), wav, sample_rate) | |
def apply_vocal_isolation(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
ref = wav.mean(0) | |
wav -= ref[:, None] | |
sources = apply_model(model, wav[None])[0] | |
wav += ref[:, None] | |
vocal_track = sources[3].cpu() # index 3 = vocals | |
out_path = os.path.join(tempfile.gettempdir(), "vocals.wav") | |
save_track(out_path, vocal_track, model.samplerate) | |
return out_path | |
# === Stem Splitting (Drums, Bass, Other, Vocals) === | |
def stem_split(audio_path): | |
model = pretrained.get_model(name='htdemucs') | |
wav = load_track_local(audio_path, model.samplerate, channels=2) | |
sources = apply_model(model, wav[None])[0] | |
output_dir = tempfile.mkdtemp() | |
stem_paths = [] | |
for i, name in enumerate(['drums', 'bass', 'other', 'vocals']): | |
path = os.path.join(output_dir, f"{name}.wav") | |
save_track(path, sources[i].cpu(), model.samplerate) | |
stem_paths.append((path, name)) | |
return stem_paths | |
# === Preset Loader with Fallback === | |
def load_presets(): | |
try: | |
preset_files = [f for f in os.listdir("presets") if f.endswith(".json")] | |
presets = {} | |
for f in preset_files: | |
path = os.path.join("presets", f) | |
try: | |
with open(path, "r") as infile: | |
data = json.load(infile) | |
if "name" in data and "effects" in data: | |
presets[data["name"]] = data["effects"] | |
except json.JSONDecodeError: | |
print(f"Invalid JSON: {f}") | |
return presets | |
except FileNotFoundError: | |
print("Presets folder not found") | |
return {} | |
preset_choices = load_presets() | |
if not preset_choices: | |
preset_choices = { | |
"Default": [], | |
"Clean Podcast": ["Noise Reduction", "Normalize"], | |
"Music Remix": ["Bass Boost", "Stereo Widening"] | |
} | |
preset_names = list(preset_choices.keys()) | |
# === Waveform Generator === | |
def show_waveform(audio_file): | |
try: | |
audio = AudioSegment.from_file(audio_file) | |
samples = np.array(audio.get_array_of_samples()) | |
plt.figure(figsize=(10, 2)) | |
plt.plot(samples[:10000], color="blue") | |
plt.axis("off") | |
buf = BytesIO() | |
plt.savefig(buf, format="png", bbox_inches="tight", dpi=100) | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
except Exception as e: | |
return None | |
# === Session Info Export === | |
def generate_session_log(audio_path, effects, isolate_vocals, export_format): | |
log = { | |
"timestamp": str(datetime.datetime.now()), | |
"filename": os.path.basename(audio_path), | |
"effects_applied": effects, | |
"isolate_vocals": isolate_vocals, | |
"export_format": export_format | |
} | |
return json.dumps(log, indent=2) | |
# === Main Processing Function === | |
def process_audio(audio_file, selected_effects, isolate_vocals, preset_name, export_format): | |
audio = AudioSegment.from_file(audio_file) | |
effect_map = { | |
"Noise Reduction": apply_noise_reduction, | |
"Compress Dynamic Range": apply_compression, | |
"Add Reverb": apply_reverb, | |
"Pitch Shift": lambda x: apply_pitch_shift(x), | |
"Echo": apply_echo, | |
"Stereo Widening": apply_stereo_widen, | |
"Bass Boost": apply_bass_boost, | |
"Treble Boost": apply_treble_boost, | |
"Normalize": apply_normalize, | |
} | |
effects_to_apply = preset_choices.get(preset_name, selected_effects) | |
for effect_name in effects_to_apply: | |
if effect_name in effect_map: | |
audio = effect_map[effect_name](audio) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: | |
if isolate_vocals: | |
temp_input = os.path.join(tempfile.gettempdir(), "input.wav") | |
audio.export(temp_input, format="wav") | |
vocal_path = apply_vocal_isolation(temp_input) | |
final_audio = AudioSegment.from_wav(vocal_path) | |
else: | |
final_audio = audio | |
output_path = f.name | |
final_audio.export(output_path, format=export_format.lower()) | |
waveform_image = show_waveform(output_path) | |
session_log = generate_session_log(audio_file, effects_to_apply, isolate_vocals, export_format) | |
return output_path, waveform_image, session_log | |
# === Batch Processing Function === | |
def batch_process_audio(files, selected_effects, isolate_vocals, preset_name, export_format): | |
output_dir = tempfile.mkdtemp() | |
results = [] | |
session_logs = [] | |
for file in files: | |
processed_path, _, log = process_audio(file.name, selected_effects, isolate_vocals, preset_name, export_format) | |
results.append(processed_path) | |
session_logs.append(log) | |
zip_path = os.path.join(output_dir, "batch_output.zip") | |
with zipfile.ZipFile(zip_path, 'w') as zipf: | |
for i, res in enumerate(results): | |
filename = f"processed_{i}.{export_format.lower()}" | |
zipf.write(res, filename) | |
zipf.writestr(f"session_info_{i}.json", session_logs[i]) | |
return zip_path | |
# === Custom Preset Upload Handler === | |
def upload_preset(preset_file): | |
try: | |
with open(preset_file.name, "r") as f: | |
data = json.load(f) | |
if "name" in data and "effects" in data: | |
preset_choices[data["name"]] = data["effects"] | |
return f"β Loaded custom preset: {data['name']}" | |
else: | |
return "β Invalid preset file" | |
except Exception as e: | |
return f"β οΈ Error loading preset: {str(e)}" | |
# === Gradio Interface === | |
effect_options = [ | |
"Noise Reduction", | |
"Compress Dynamic Range", | |
"Add Reverb", | |
"Pitch Shift", | |
"Echo", | |
"Stereo Widening", | |
"Bass Boost", | |
"Treble Boost", | |
"Normalize" | |
] | |
# === Multi-Tab UI === | |
with gr.Blocks(title="AI Audio Studio") as demo: | |
gr.Markdown("## π§ AI Audio Studio\nUpload, edit, export β all powered by AI") | |
# ----- Single File Studio Tab ----- | |
with gr.Tab("π΅ Single File Studio"): | |
gr.Interface( | |
fn=process_audio, | |
inputs=[ | |
gr.Audio(label="Upload Audio", type="filepath"), | |
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=[ | |
gr.Audio(label="Processed Audio", type="filepath"), | |
gr.Image(label="Waveform Preview"), | |
gr.Textbox(label="Session Log (JSON)", lines=5) | |
], | |
title="Edit One File at a Time", | |
description="Apply effects, preview waveform, and export as MP3 or WAV", | |
allow_flagging="never" | |
) | |
# ----- Batch Processing Tab ----- | |
with gr.Tab("π Batch Processing"): | |
gr.Interface( | |
fn=batch_process_audio, | |
inputs=[ | |
gr.File(label="Upload Multiple Audio Files", file_count="multiple"), | |
gr.CheckboxGroup(choices=effect_options, label="Apply Effects in Order"), | |
gr.Checkbox(label="Isolate Vocals After Effects"), | |
gr.Dropdown(choices=preset_names, label="Select Preset", value=preset_names[0] if preset_names else None), | |
gr.Dropdown(choices=["MP3", "WAV"], label="Export Format", value="MP3") | |
], | |
outputs=gr.File(label="Download ZIP of All Processed Files"), | |
title="Batch Audio Processor", | |
description="Upload multiple files, apply effects in bulk, and download all results in a single ZIP.", | |
allow_flagging="never", | |
submit_btn="Process All Files", | |
clear_btn=False | |
) | |
# ----- Remix Mode Tab ----- | |
with gr.Tab("π Remix Mode (Split Stems)"): | |
def remix_mode(audio_file): | |
stem_paths = stem_split(audio_file.name) | |
return [path for path, _ in stem_paths], \ | |
[name for _, name in stem_paths] | |
gr.Interface( | |
fn=remix_mode, | |
inputs=gr.Audio(label="Upload Music Track", type="filepath"), | |
outputs=[ | |
gr.File(label="Stem Files (Vocals, Drums, etc.)"), | |
gr.Textbox(label="Stem Names") | |
], | |
title="Split Into Drums, Bass, Vocals", | |
description="Use AI to separate musical elements like vocals, drums, and bass." | |
) | |
# ----- Preset Manager Tab ----- | |
with gr.Tab("βοΈ Preset Manager"): | |
gr.Interface( | |
fn=upload_preset, | |
inputs=gr.File(label="Upload Your Own Preset (.json)"), | |
outputs=gr.Textbox(label="Preset Status"), | |
title="Load Custom Presets", | |
description="Upload your own `.json` preset to customize effect chains." | |
) | |
demo.launch() |