import chainlit as cl import pandas as pd import io import matplotlib.pyplot as plt import base64 from io import BytesIO from pandasai import SmartDataframe import pandas as pd from pandasai.llm import OpenAI from io import StringIO import matplotlib.pyplot as plt import csv from collections import defaultdict def find_most_valuable_feature(csv_file): print("find_most_valuable_feature") print(csv_file) openai.api_key = os.environ["OPENAI_API_KEY"] smart_llm = OpenAI() # Initialize a defaultdict to store column data columns = defaultdict(list) # Read the CSV file and populate the defaultdict with open("upload.csv") as f: reader = csv.reader(f) headers = next(reader) for row in reader: for header, value in zip(headers, row): columns[header].append(value) # Manually create a DataFrame from the defaultdict smart_df = pd.DataFrame({ "ID": columns["ID"], "Date and Time": columns["Date and Time"], "Business Unit": columns["Business Unit"], "Usage Change": columns["Usage Change"], "Wolftech Improvement": columns["Wolftech Improvement"], "Likelihood to Recommend": columns["Likelihood to Recommend"], "Effective Training": columns["Effective Training"], "Most Valuable Feature": columns["Most Valuable Feature"] }) smart_df = SmartDataframe(smart_df, config={"llm": smart_llm}) out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?') print(out) df = out # Plotting plt.figure(figsize=(10, 6)) plt.bar(df["Most Valuable Feature"], df["Count"], color='blue') plt.xlabel('Most Valuable Feature') plt.ylabel('Count') plt.title('Count of Most Valuable Features') plt.xticks(rotation=45, ha="right") # Rotate labels for better readability plt.tight_layout() # Adjust layout for better fit # Save the plot to a BytesIO object image_buffer = BytesIO() plt.savefig(image_buffer, format='png') image_buffer.seek(0) return image_buffer def process_and_analyze_data(csv_file): # Read CSV file csv_data = pd.read_csv(csv_file) # Logging to check data loading print(f"CSV Data Loaded: {csv_data.head()}") # Count of responses in each category of 'Business Unit' business_unit_counts = csv_data['Business Unit'].value_counts() # Plotting the count of responses in each 'Business Unit' category plt.figure(figsize=(10, 6)) business_unit_counts.plot(kind='bar') plt.title('Count of Responses by Business Unit') plt.xlabel('Business Unit') plt.ylabel('Count') plt.xticks(rotation=45) plt.tight_layout() # Save the plot to a BytesIO object image_buffer = BytesIO() plt.savefig(image_buffer, format='png') image_buffer.seek(0) return image_buffer # Function to handle message events @cl.on_message async def handle_message(message: cl.Message): # Retrieve the CSV file from the message csv_file = next( ( io.BytesIO(file.content) for file in message.elements or [] if file.mime and "csv" in file.mime ), None, ) # Logging to check file retrieval print(f"CSV File: {csv_file}") if csv_file: try: image_buffer = find_most_valuable_feature(csv_file) # Get bytes data from BytesIO object and send the image data image_data = image_buffer.getvalue() name = "chart" cl.user_session.set(name, image_data) cl.user_session.set("generated_image", name) await cl.Message(content="Based on the people who increased usage, here are the most valuable features").send() generated_image = cl.user_session.get(name) elements = [] actions = [] elements = [ cl.Image( content=generated_image, name=name, display="inline", size="large" ) ] await cl.Message(content=name, elements=elements, actions=actions).send() except Exception as e: await cl.Message(content=f"An error occurred: {str(e)}").send() else: await cl.Message(content="Please upload a CSV file.").send() # Run the ChainLit app if __name__ == "__main__": cl.run()