app
Browse files
app.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import chainlit as cl
|
2 |
+
import pandas as pd
|
3 |
+
import io
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from pandasai import SmartDataframe
|
8 |
+
import pandas as pd
|
9 |
+
from pandasai.llm import OpenAI
|
10 |
+
from io import StringIO
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import csv
|
13 |
+
from collections import defaultdict
|
14 |
+
|
15 |
+
|
16 |
+
def find_most_valuable_feature(csv_file):
|
17 |
+
print("find_most_valuable_feature")
|
18 |
+
print(csv_file)
|
19 |
+
|
20 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
21 |
+
smart_llm = OpenAI()
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
# Initialize a defaultdict to store column data
|
27 |
+
columns = defaultdict(list)
|
28 |
+
|
29 |
+
# Read the CSV file and populate the defaultdict
|
30 |
+
with open("upload.csv") as f:
|
31 |
+
reader = csv.reader(f)
|
32 |
+
headers = next(reader)
|
33 |
+
|
34 |
+
for row in reader:
|
35 |
+
for header, value in zip(headers, row):
|
36 |
+
columns[header].append(value)
|
37 |
+
|
38 |
+
# Manually create a DataFrame from the defaultdict
|
39 |
+
smart_df = pd.DataFrame({
|
40 |
+
"ID": columns["ID"],
|
41 |
+
"Date and Time": columns["Date and Time"],
|
42 |
+
"Business Unit": columns["Business Unit"],
|
43 |
+
"Usage Change": columns["Usage Change"],
|
44 |
+
"Wolftech Improvement": columns["Wolftech Improvement"],
|
45 |
+
"Likelihood to Recommend": columns["Likelihood to Recommend"],
|
46 |
+
"Effective Training": columns["Effective Training"],
|
47 |
+
"Most Valuable Feature": columns["Most Valuable Feature"]
|
48 |
+
})
|
49 |
+
|
50 |
+
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm})
|
51 |
+
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?')
|
52 |
+
|
53 |
+
print(out)
|
54 |
+
|
55 |
+
|
56 |
+
df = out
|
57 |
+
|
58 |
+
# Plotting
|
59 |
+
plt.figure(figsize=(10, 6))
|
60 |
+
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue')
|
61 |
+
plt.xlabel('Most Valuable Feature')
|
62 |
+
plt.ylabel('Count')
|
63 |
+
plt.title('Count of Most Valuable Features')
|
64 |
+
plt.xticks(rotation=45, ha="right") # Rotate labels for better readability
|
65 |
+
plt.tight_layout() # Adjust layout for better fit
|
66 |
+
|
67 |
+
# Save the plot to a BytesIO object
|
68 |
+
image_buffer = BytesIO()
|
69 |
+
plt.savefig(image_buffer, format='png')
|
70 |
+
image_buffer.seek(0)
|
71 |
+
|
72 |
+
return image_buffer
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def process_and_analyze_data(csv_file):
|
79 |
+
# Read CSV file
|
80 |
+
csv_data = pd.read_csv(csv_file)
|
81 |
+
|
82 |
+
# Logging to check data loading
|
83 |
+
print(f"CSV Data Loaded: {csv_data.head()}")
|
84 |
+
|
85 |
+
# Count of responses in each category of 'Business Unit'
|
86 |
+
business_unit_counts = csv_data['Business Unit'].value_counts()
|
87 |
+
|
88 |
+
# Plotting the count of responses in each 'Business Unit' category
|
89 |
+
plt.figure(figsize=(10, 6))
|
90 |
+
business_unit_counts.plot(kind='bar')
|
91 |
+
plt.title('Count of Responses by Business Unit')
|
92 |
+
plt.xlabel('Business Unit')
|
93 |
+
plt.ylabel('Count')
|
94 |
+
plt.xticks(rotation=45)
|
95 |
+
plt.tight_layout()
|
96 |
+
|
97 |
+
# Save the plot to a BytesIO object
|
98 |
+
image_buffer = BytesIO()
|
99 |
+
plt.savefig(image_buffer, format='png')
|
100 |
+
image_buffer.seek(0)
|
101 |
+
|
102 |
+
return image_buffer
|
103 |
+
|
104 |
+
|
105 |
+
# Function to handle message events
|
106 |
+
|
107 |
+
@cl.on_message
|
108 |
+
async def handle_message(message: cl.Message):
|
109 |
+
# Retrieve the CSV file from the message
|
110 |
+
csv_file = next(
|
111 |
+
(
|
112 |
+
io.BytesIO(file.content)
|
113 |
+
for file in message.elements or []
|
114 |
+
if file.mime and "csv" in file.mime
|
115 |
+
),
|
116 |
+
None,
|
117 |
+
)
|
118 |
+
|
119 |
+
# Logging to check file retrieval
|
120 |
+
print(f"CSV File: {csv_file}")
|
121 |
+
|
122 |
+
if csv_file:
|
123 |
+
try:
|
124 |
+
|
125 |
+
image_buffer = find_most_valuable_feature(csv_file)
|
126 |
+
|
127 |
+
# Get bytes data from BytesIO object and send the image data
|
128 |
+
image_data = image_buffer.getvalue()
|
129 |
+
name = "chart"
|
130 |
+
cl.user_session.set(name, image_data)
|
131 |
+
cl.user_session.set("generated_image", name)
|
132 |
+
|
133 |
+
await cl.Message(content="Based on the people who increased usage, here are the most valuable features").send()
|
134 |
+
|
135 |
+
generated_image = cl.user_session.get(name)
|
136 |
+
|
137 |
+
elements = []
|
138 |
+
actions = []
|
139 |
+
|
140 |
+
elements = [
|
141 |
+
cl.Image(
|
142 |
+
content=generated_image,
|
143 |
+
name=name,
|
144 |
+
display="inline",
|
145 |
+
size="large"
|
146 |
+
)
|
147 |
+
]
|
148 |
+
|
149 |
+
await cl.Message(content=name, elements=elements, actions=actions).send()
|
150 |
+
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
await cl.Message(content=f"An error occurred: {str(e)}").send()
|
154 |
+
else:
|
155 |
+
await cl.Message(content="Please upload a CSV file.").send()
|
156 |
+
|
157 |
+
|
158 |
+
# Run the ChainLit app
|
159 |
+
if __name__ == "__main__":
|
160 |
+
cl.run()
|