|
import chainlit as cl |
|
import pandas as pd |
|
import io |
|
import matplotlib.pyplot as plt |
|
import base64 |
|
from io import BytesIO |
|
from pandasai import SmartDataframe |
|
import pandas as pd |
|
from pandasai.llm import OpenAI |
|
from io import StringIO |
|
import matplotlib.pyplot as plt |
|
import csv |
|
from collections import defaultdict |
|
import os |
|
|
|
|
|
got_csv = False |
|
|
|
|
|
def find_most_valuable_feature(csv_file): |
|
print("find_most_valuable_feature") |
|
print(csv_file) |
|
|
|
smart_llm = OpenAI(api_token=os.environ["OPENAI_API_KEY"]) |
|
|
|
|
|
|
|
|
|
|
|
columns = defaultdict(list) |
|
|
|
|
|
with open("upload.csv") as f: |
|
reader = csv.reader(f) |
|
headers = next(reader) |
|
|
|
for row in reader: |
|
for header, value in zip(headers, row): |
|
columns[header].append(value) |
|
|
|
|
|
smart_df = pd.DataFrame({ |
|
"ID": columns["ID"], |
|
"Date and Time": columns["Date and Time"], |
|
"Business Unit": columns["Business Unit"], |
|
"Usage Change": columns["Usage Change"], |
|
"Wolftech Improvement": columns["Wolftech Improvement"], |
|
"Likelihood to Recommend": columns["Likelihood to Recommend"], |
|
"Effective Training": columns["Effective Training"], |
|
"Most Valuable Feature": columns["Most Valuable Feature"] |
|
}) |
|
|
|
smart_df = SmartDataframe(smart_df, config={"llm": smart_llm}) |
|
out = smart_df.chat('Summarize the top three "Most Valuable Feature" for people where Usage Changed was Increased?') |
|
|
|
print(out) |
|
|
|
|
|
df = out |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.bar(df["Most Valuable Feature"], df["Count"], color='blue') |
|
plt.xlabel('Most Valuable Feature') |
|
plt.ylabel('Count') |
|
plt.title('Count of Most Valuable Features') |
|
plt.xticks(rotation=45, ha="right") |
|
plt.tight_layout() |
|
|
|
|
|
image_buffer = BytesIO() |
|
plt.savefig(image_buffer, format='png') |
|
image_buffer.seek(0) |
|
|
|
return image_buffer |
|
|
|
|
|
|
|
|
|
|
|
def process_and_analyze_data(csv_file): |
|
|
|
csv_data = pd.read_csv(csv_file) |
|
|
|
|
|
print(f"CSV Data Loaded: {csv_data.head()}") |
|
|
|
|
|
business_unit_counts = csv_data['Business Unit'].value_counts() |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
business_unit_counts.plot(kind='bar') |
|
plt.title('Count of Responses by Business Unit') |
|
plt.xlabel('Business Unit') |
|
plt.ylabel('Count') |
|
plt.xticks(rotation=45) |
|
plt.tight_layout() |
|
|
|
|
|
image_buffer = BytesIO() |
|
plt.savefig(image_buffer, format='png') |
|
image_buffer.seek(0) |
|
|
|
return image_buffer |
|
|
|
|
|
|
|
|
|
@cl.on_message |
|
async def handle_message(message: cl.Message): |
|
global got_csv |
|
|
|
csv_file = next( |
|
( |
|
io.BytesIO(file.content) |
|
for file in message.elements or [] |
|
if file.mime and "csv" in file.mime |
|
), |
|
None, |
|
) |
|
|
|
|
|
print(f"CSV File: {csv_file}") |
|
|
|
if csv_file: |
|
got_csv = True |
|
try: |
|
|
|
image_buffer = find_most_valuable_feature(csv_file) |
|
|
|
|
|
image_data = image_buffer.getvalue() |
|
name = "chart" |
|
cl.user_session.set(name, image_data) |
|
cl.user_session.set("generated_image", name) |
|
|
|
await cl.Message(content="Based on the people who increased usage, here are the most valuable features...").send() |
|
|
|
generated_image = cl.user_session.get(name) |
|
|
|
elements = [] |
|
actions = [] |
|
|
|
elements = [ |
|
cl.Image( |
|
content=generated_image, |
|
name=name, |
|
display="inline", |
|
size="large" |
|
) |
|
] |
|
|
|
await cl.Message(content=name, elements=elements, actions=actions).send() |
|
|
|
|
|
except Exception as e: |
|
await cl.Message(content=f"An error occurred: {str(e)}").send() |
|
else: |
|
if not got_csv: |
|
await cl.Message(content="Please upload a CSV file.").send() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
cl.run() |
|
|