File size: 3,800 Bytes
098536f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c1946
098536f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c1946
098536f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c1946
098536f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfbda07
098536f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c1946
098536f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import openai
from langchain.chat_models import ChatOpenAI
import chainlit as cl

from langchain.chains import LLMChain, SequentialChain 
from langchain.prompts import PromptTemplate

from llama_index.query_engine.retriever_query_engine import RetrieverQueryEngine
from llama_index.callbacks.base import CallbackManager
from llama_index import (
    LLMPredictor,
    ServiceContext,
    StorageContext,
    load_index_from_storage,
)

from llama_index import (
    SimpleDirectoryReader,
    LLMPredictor,
    ServiceContext,
    get_response_synthesizer,
)
from llama_index.indices.document_summary import DocumentSummaryIndex
from llama_index.llms import OpenAI

openai.api_key = os.environ["OPENAI_API_KEY"]


from llama_index import SimpleDirectoryReader

required_exts = [".txt"]

reader = SimpleDirectoryReader(
    input_dir="data",
    required_exts=required_exts,
    recursive=True,
    filename_as_id=True
)

docs = reader.load_data()
print(f"Loaded {len(docs)} docs")

chatgpt = OpenAI(temperature=0.1, model="gpt-3.5-turbo")
service_context = ServiceContext.from_defaults(llm=chatgpt, chunk_size=1024)

response_synthesizer = get_response_synthesizer(
    response_mode="tree_summarize", use_async=True
)

doc_summary_index = DocumentSummaryIndex.from_documents(
    docs,
    service_context=service_context,
    response_synthesizer=response_synthesizer,
)

#print(doc_summary_index.get_document_summary('data/final-hh.txt'))

@cl.on_chat_start
async def factory():
    llm_predictor = LLMPredictor(
        llm=ChatOpenAI(
            temperature=0,
            model_name="gpt-3.5-turbo",
            streaming=True,
        ),
    )
    service_context = ServiceContext.from_defaults(
        llm_predictor=llm_predictor,
        chunk_size=512,
        callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
    )

    
    generation_type = None

    twitter_expert_prompt = "You are a twitter expert. Create a twitter thread based on this: "
    
    summary_text = doc_summary_index.get_document_summary('data/final-hh.txt')
    summary_text_without_newlines = summary_text.strip()
    prompt = twitter_expert_prompt + summary_text
    
    twitter_prompt = twitter_expert_prompt + summary_text_without_newlines
    twitter_prompt_template = PromptTemplate.from_template(
        twitter_expert_prompt
    )
    
    while generation_type == None:
        generation_type = await cl.AskUserMessage(
            content="Twitter or blog?", timeout=15
        ).send()
        
        if generation_type == 'twitter':
            print("twitter generation...")
        elif generation_type == 'blog':
            print("blog generation...")
        
    await cl.Message(content=f"generating {generation_type['content']} thread").send()
    
    
    
    prompt = 'write a tweet about' + summary_text
    print(f'prompt: {prompt}')
    
    
    llm_twitter_expert = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.7)
    tweet_thread_chain = LLMChain(llm=llm_twitter_expert,prompt=twitter_prompt_template) 
    #tweet_thread = tweet_thread_chain.run(prompt=prompt)
    #await cl.Message(content=tweet_thread).send()
    
    the_final_prompt = f"write a twitter thread about {summary_text_without_newlines}"
    
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a twitter expert."},
            #{"role": "assistant", "content": "{summary_text_without_newlines}"},
            {"role": "user", "content": the_final_prompt},
        ]
    )
    await cl.Message(content=response['choices'][0]['message']['content']).send()
    
    
    
    #await cl.Message(content=f"generating {doc_summary_index.get_document_summary('data/final-hh.txt')}").send()