import os from typing import List from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ( ConversationalRetrievalChain, ) from langchain.document_loaders import PyPDFLoader from langchain.chat_models import ChatOpenAI from langchain.prompts.chat import ( ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate, ) from langchain.docstore.document import Document from langchain.memory import ChatMessageHistory, ConversationBufferMemory import chainlit as cl text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) system_template = """Use the following pieces of context to answer the users question. If you don't know the answer, just say that you don't know, don't try to make up an answer. ALWAYS return a "SOURCES" part in your answer. The "SOURCES" part should be a reference to the source of the document from which you got your answer. And if the user greets with greetings like Hi, hello, How are you, etc reply accordingly as well. Example of your response should be: The answer is foo SOURCES: xyz Begin! ---------------- {summaries}""" messages = [ SystemMessagePromptTemplate.from_template(system_template), HumanMessagePromptTemplate.from_template("{question}"), ] prompt = ChatPromptTemplate.from_messages(messages) chain_type_kwargs = {"prompt": prompt} def process_file(file_path: str): # Example using PyPDF2 to extract text from a PDF file from PyPDF2 import PdfReader reader = PdfReader(file_path) texts = [] for page in reader.pages: texts.append(page.extract_text()) return texts @cl.on_chat_start async def on_chat_start(): file = None # Prompt users to upload either a text or PDF file while file is None: files = await cl.AskFileMessage( content="Please upload a text or PDF file to begin!", accept=["text/plain", "application/pdf"], # This line is for UI guidance max_size_mb=20, timeout=180, ).send() if files: file = files[0] # Assuming the user uploads one file at a time filename = file.name # Initialize an empty list for texts, which will be populated based on the file type texts = [] # Process the file based on its extension if filename.endswith('.txt'): # Handle as text file with open(file.path, "r", encoding="utf-8") as f: text = f.read() texts.append(text) await cl.Message(content=f"`{filename}` uploaded, it contains {len(text)} characters!").send() elif filename.endswith('.pdf'): # Handle as PDF texts = process_file(file.path) # Adjust this call according to your PDF processing implementation else: await cl.Message(content="Unsupported file type uploaded. Please upload a text or PDF file.").send() return # Exit if the file type is not supported # Process texts for conversational retrieval or other purposes here # For demonstration, we'll just set up a simple Chroma vector store and conversational retrieval chain # Create a Chroma vector store embeddings = OpenAIEmbeddings() docsearch = await cl.make_async(Chroma.from_texts)( texts, embeddings, metadatas=[{"source": f"{i}-pl"} for i in range(len(texts))] ) message_history = ChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", chat_memory=message_history, return_messages=True, ) # Set up the conversational retrieval chain chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), chain_type="stuff", retriever=docsearch.as_retriever(), memory=memory, return_source_documents=True, ) # Let the user know that the system is ready await cl.Message(content=f"Your file `{filename}` is now ready for questions!").send() # Save the chain in the user session for later use cl.user_session.set("chain", chain) @cl.on_message async def main(message): chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain cb = cl.AsyncLangchainCallbackHandler() res = await chain.acall(message.content, callbacks=[cb]) answer = res["answer"] source_documents = res["source_documents"] # type: List[Document] text_elements = [] # type: List[cl.Text] if source_documents: for source_idx, source_doc in enumerate(source_documents): source_name = f"source_{source_idx}" # Create the text element referenced in the message text_elements.append( cl.Text(content=source_doc.page_content, name=source_name) ) source_names = [text_el.name for text_el in text_elements] if source_names: answer += f"\nSources: {', '.join(source_names)}" else: answer += "\nNo sources found" await cl.Message(content=answer, elements=text_elements).send()