Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torchaudio | |
| import numpy as np | |
| from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
| # Model loading function with caching | |
| def load_model(): | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| model = WhisperForConditionalGeneration.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") | |
| model = model.to(device=device, dtype=torch_dtype) | |
| processor = WhisperProcessor.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune") | |
| return model, processor, device, torch_dtype | |
| # Load model and processor once at startup | |
| model, processor, device, torch_dtype = load_model() | |
| # Define the transcription function | |
| def transcribe_audio(audio_file): | |
| # Check if audio file exists | |
| if audio_file is None: | |
| return "Please upload an audio file" | |
| try: | |
| # Load and preprocess audio | |
| waveform, sample_rate = torchaudio.load(audio_file) | |
| # Resample to 16kHz (required for Whisper models) | |
| if sample_rate != 16000: | |
| resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000) | |
| waveform = resampler(waveform) | |
| # Convert stereo to mono if needed | |
| if waveform.shape[0] > 1: | |
| waveform = waveform.mean(dim=0, keepdim=True) | |
| # Convert to numpy array | |
| waveform_np = waveform.squeeze().cpu().numpy() | |
| # Process with model | |
| input_features = processor(waveform_np, sampling_rate=16000, return_tensors="pt").input_features | |
| input_features = input_features.to(device=device, dtype=torch_dtype) | |
| generated_ids = model.generate(input_features, max_new_tokens=128) | |
| transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
| return transcription | |
| except Exception as e: | |
| return f"Error processing audio: {str(e)}" | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=transcribe_audio, | |
| inputs=gr.Audio(type="filepath"), | |
| outputs="text", | |
| title="ATC Speech Transcription", | |
| description="Convert Air Traffic Control (ATC) radio communications to text. Upload your own ATC audio or try the examples below.", | |
| examples=[ | |
| ["atc-sample-1.wav"], | |
| ["atc-sample-2.wav"], | |
| ["atc-sample-3.wav"] | |
| ], | |
| article="This model is fine-tuned on the ATCOSIM dataset with a 3.73% Word Error Rate on ATC communications. It is specifically optimized for aviation terminology, callsigns, and standard phraseology. Audio should be 16kHz sample rate for best results." | |
| ) | |
| # Launch the interface | |
| if __name__ == "__main__": | |
| demo.launch() |