Spaces:
Runtime error
Runtime error
Update Space with advanced template including Load Model button and enhanced features
Browse files- README.md +20 -8
- app.py +462 -73
- requirements.txt +8 -5
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: pashto-base-bloom Training Space
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
@@ -8,15 +8,27 @@ sdk_version: 4.36.1
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
-
hardware: zero-a10g
|
12 |
---
|
13 |
|
14 |
-
# pashto-base-bloom Training Space
|
15 |
|
16 |
-
This space provides
|
17 |
|
18 |
-
|
19 |
-
2. **Fine-tune**: Fine-tune the existing model
|
20 |
-
3. **Test**: Test the model with sample inputs
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: pashto-base-bloom Advanced Training Space
|
3 |
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
+
hardware: zero-gpu-a10g
|
12 |
---
|
13 |
|
14 |
+
# pashto-base-bloom Advanced Training Space
|
15 |
|
16 |
+
This space provides enhanced functionality for working with the pashto-base-bloom model:
|
17 |
|
18 |
+
## β¨ New Features
|
|
|
|
|
19 |
|
20 |
+
1. **Load Model Button**: Explicitly load the model before using other features
|
21 |
+
2. **Advanced Generation Settings**: Control temperature, top-p, and repetition penalty
|
22 |
+
3. **Model Evaluation**: Measure model performance on test data
|
23 |
+
4. **Enhanced Training**: Better progress tracking and parameter tuning
|
24 |
+
5. **Model Information**: View details about the model architecture and parameters
|
25 |
+
6. **Recommendations**: Get suggestions for next steps after each operation
|
26 |
+
|
27 |
+
## π§ Capabilities
|
28 |
+
|
29 |
+
- **Test**: Generate text with customizable parameters
|
30 |
+
- **Train**: Train or fine-tune the model with your data
|
31 |
+
- **Evaluate**: Measure model performance quantitatively
|
32 |
+
- **Upload**: Save your trained models to Hugging Face Hub
|
33 |
+
|
34 |
+
Powered by ZeroGPU for efficient GPU acceleration.
|
app.py
CHANGED
@@ -1,145 +1,534 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# Model configuration
|
8 |
MODEL_NAME = "tasal9/pashto-base-bloom"
|
|
|
9 |
|
10 |
@spaces.GPU
|
11 |
def load_model():
|
12 |
-
"""Load the model and tokenizer"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
try:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
except Exception as e:
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
@spaces.GPU
|
23 |
-
def
|
24 |
-
"""
|
25 |
-
if
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
if
|
31 |
-
return "
|
32 |
|
33 |
try:
|
34 |
-
inputs =
|
35 |
|
|
|
36 |
with torch.no_grad():
|
37 |
-
outputs =
|
38 |
-
inputs,
|
39 |
-
max_length=
|
40 |
temperature=temperature,
|
|
|
|
|
41 |
do_sample=True,
|
42 |
-
pad_token_id=
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
except Exception as e:
|
49 |
return f"β Error during generation: {str(e)}"
|
50 |
|
51 |
-
def
|
52 |
-
"""
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Create Gradio interface
|
60 |
-
with gr.Blocks(title="
|
61 |
-
gr.Markdown(f"#
|
62 |
-
gr.Markdown("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
64 |
with gr.Tabs():
|
65 |
# Test Tab
|
66 |
with gr.TabItem("π§ͺ Test Model"):
|
67 |
-
gr.Markdown("###
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
test_input = gr.Textbox(
|
71 |
-
label="Input
|
72 |
placeholder="Enter text to test the model...",
|
73 |
lines=3
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
test_btn = gr.Button("π Generate", variant="primary")
|
88 |
|
89 |
with gr.Column():
|
90 |
test_output = gr.Textbox(
|
91 |
-
label="
|
92 |
-
lines=
|
93 |
interactive=False
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
test_btn.click(
|
97 |
-
fn=
|
98 |
-
inputs=[test_input, max_length_slider, temperature_slider],
|
99 |
outputs=test_output
|
100 |
)
|
101 |
|
102 |
# Train Tab
|
103 |
with gr.TabItem("ποΈ Train Model"):
|
104 |
-
gr.Markdown("### Train the model
|
105 |
train_dataset = gr.Textbox(
|
106 |
label="Training Dataset",
|
107 |
-
placeholder="
|
108 |
-
lines=
|
109 |
)
|
110 |
with gr.Row():
|
111 |
-
train_epochs = gr.Number(label="Epochs", value=1, minimum=1)
|
112 |
-
train_lr = gr.Number(label="Learning Rate", value=2e-5, minimum=1e-6)
|
|
|
113 |
|
|
|
114 |
train_btn = gr.Button("π Start Training", variant="primary")
|
115 |
-
train_output = gr.Textbox(label="Training
|
116 |
|
117 |
train_btn.click(
|
118 |
fn=train_model,
|
119 |
-
inputs=[train_dataset, train_epochs, train_lr],
|
120 |
outputs=train_output
|
121 |
)
|
122 |
|
123 |
-
#
|
124 |
-
with gr.TabItem("
|
125 |
-
gr.Markdown("###
|
126 |
-
|
127 |
-
label="
|
128 |
-
placeholder="
|
129 |
-
lines=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
)
|
|
|
|
|
|
|
|
|
131 |
with gr.Row():
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
|
138 |
-
|
139 |
-
fn=
|
140 |
-
inputs=[
|
141 |
-
outputs=
|
142 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
iface.launch()
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Enhanced Space Template with Load Model Button and Advanced Features
|
4 |
+
"""
|
5 |
+
|
6 |
import gradio as gr
|
7 |
import spaces
|
8 |
import torch
|
|
|
9 |
import os
|
10 |
+
import time
|
11 |
+
import json
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
|
13 |
+
from datasets import Dataset
|
14 |
+
from huggingface_hub import HfApi, upload_folder
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
# Global variables to store model and tokenizer
|
18 |
+
MODEL = None
|
19 |
+
TOKENIZER = None
|
20 |
+
MODEL_LOADED = False
|
21 |
+
MODEL_LOADING_TIME = None
|
22 |
|
23 |
+
# Model configuration - replace with your model
|
24 |
MODEL_NAME = "tasal9/pashto-base-bloom"
|
25 |
+
MODEL_TYPE = "causal_lm" # "causal_lm", "seq2seq", "text_classification", etc.
|
26 |
|
27 |
@spaces.GPU
|
28 |
def load_model():
|
29 |
+
"""Load the model and tokenizer with progress tracking"""
|
30 |
+
global MODEL, TOKENIZER, MODEL_LOADED, MODEL_LOADING_TIME
|
31 |
+
|
32 |
+
if MODEL_LOADED and MODEL is not None and TOKENIZER is not None:
|
33 |
+
return "β
Model already loaded and ready to use!"
|
34 |
+
|
35 |
+
start_time = time.time()
|
36 |
+
progress_updates = []
|
37 |
+
|
38 |
try:
|
39 |
+
progress_updates.append("π Starting model loading process...")
|
40 |
+
yield "\n".join(progress_updates)
|
41 |
+
|
42 |
+
progress_updates.append("β³ Loading tokenizer...")
|
43 |
+
yield "\n".join(progress_updates)
|
44 |
+
|
45 |
+
# Load tokenizer
|
46 |
+
TOKENIZER = AutoTokenizer.from_pretrained(MODEL_NAME)
|
47 |
+
if TOKENIZER.pad_token is None and TOKENIZER.eos_token is not None:
|
48 |
+
TOKENIZER.pad_token = TOKENIZER.eos_token
|
49 |
+
|
50 |
+
progress_updates.append("β
Tokenizer loaded successfully")
|
51 |
+
yield "\n".join(progress_updates)
|
52 |
+
|
53 |
+
progress_updates.append(f"β³ Loading model {MODEL_NAME} to GPU (this may take a while)...")
|
54 |
+
yield "\n".join(progress_updates)
|
55 |
+
|
56 |
+
# Load model with appropriate settings based on type
|
57 |
+
if MODEL_TYPE == "causal_lm":
|
58 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
59 |
+
MODEL_NAME,
|
60 |
+
torch_dtype=torch.float16,
|
61 |
+
device_map="auto"
|
62 |
+
)
|
63 |
+
else:
|
64 |
+
# Default to causal language model if type not specified
|
65 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
66 |
+
MODEL_NAME,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
device_map="auto"
|
69 |
+
)
|
70 |
+
|
71 |
+
MODEL_LOADED = True
|
72 |
+
MODEL_LOADING_TIME = time.time() - start_time
|
73 |
+
|
74 |
+
progress_updates.append(f"β
Model loaded successfully in {MODEL_LOADING_TIME:.2f} seconds")
|
75 |
+
progress_updates.append(f"π Model is ready to use! You can now use the features below.")
|
76 |
+
progress_updates.append(f"π‘ RECOMMENDATION: Start by testing the model with a simple prompt to ensure it's working properly.")
|
77 |
+
|
78 |
+
yield "\n".join(progress_updates)
|
79 |
+
|
80 |
except Exception as e:
|
81 |
+
error_msg = f"β Failed to load model: {str(e)}"
|
82 |
+
progress_updates.append(error_msg)
|
83 |
+
yield "\n".join(progress_updates)
|
84 |
+
MODEL_LOADED = False
|
85 |
+
return "\n".join(progress_updates)
|
86 |
+
|
87 |
+
def check_model_loaded():
|
88 |
+
"""Check if model is loaded and return appropriate message"""
|
89 |
+
if not MODEL_LOADED or MODEL is None or TOKENIZER is None:
|
90 |
+
return False, "β Please load the model first using the 'Load Model' button at the top of the page."
|
91 |
+
return True, "Model loaded and ready"
|
92 |
|
93 |
@spaces.GPU
|
94 |
+
def generate_text(input_text, max_length=100, temperature=0.7, top_p=0.9, repetition_penalty=1.2):
|
95 |
+
"""Generate text from the model"""
|
96 |
+
# Check if model is loaded
|
97 |
+
is_loaded, message = check_model_loaded()
|
98 |
+
if not is_loaded:
|
99 |
+
return message
|
100 |
|
101 |
+
if not input_text.strip():
|
102 |
+
return "Please enter a prompt to generate text."
|
103 |
|
104 |
try:
|
105 |
+
inputs = TOKENIZER(input_text, return_tensors="pt").to(MODEL.device)
|
106 |
|
107 |
+
# Generate text with specified parameters
|
108 |
with torch.no_grad():
|
109 |
+
outputs = MODEL.generate(
|
110 |
+
**inputs,
|
111 |
+
max_length=max_length,
|
112 |
temperature=temperature,
|
113 |
+
top_p=top_p,
|
114 |
+
repetition_penalty=repetition_penalty,
|
115 |
do_sample=True,
|
116 |
+
pad_token_id=TOKENIZER.eos_token_id
|
117 |
)
|
118 |
|
119 |
+
generated_text = TOKENIZER.decode(outputs[0], skip_special_tokens=True)
|
120 |
+
|
121 |
+
# Return just the newly generated text without the prompt
|
122 |
+
return generated_text[len(input_text):].strip()
|
123 |
|
124 |
except Exception as e:
|
125 |
return f"β Error during generation: {str(e)}"
|
126 |
|
127 |
+
def prepare_training_dataset(dataset_text):
|
128 |
+
"""Prepare training dataset from text input"""
|
129 |
+
# Check if model is loaded
|
130 |
+
is_loaded, message = check_model_loaded()
|
131 |
+
if not is_loaded:
|
132 |
+
return None, message
|
133 |
+
|
134 |
+
lines = [line.strip() for line in dataset_text.split("\n") if line.strip()]
|
135 |
+
|
136 |
+
if not lines:
|
137 |
+
return None, "β Empty dataset. Please provide training examples."
|
138 |
+
|
139 |
+
try:
|
140 |
+
# Create a simple dataset
|
141 |
+
dataset = Dataset.from_dict({"text": lines})
|
142 |
+
|
143 |
+
# Tokenize the dataset
|
144 |
+
def tokenize_function(examples):
|
145 |
+
return TOKENIZER(examples["text"], padding="max_length", truncation=True, max_length=512)
|
146 |
+
|
147 |
+
tokenized_dataset = dataset.map(tokenize_function, batched=True)
|
148 |
+
return tokenized_dataset, f"β
Dataset prepared with {len(lines)} examples"
|
149 |
+
|
150 |
+
except Exception as e:
|
151 |
+
return None, f"β Failed to prepare dataset: {str(e)}"
|
152 |
|
153 |
+
@spaces.GPU
|
154 |
+
def train_model(dataset_text, epochs=1, learning_rate=2e-5, batch_size=2, save_model=False):
|
155 |
+
"""Train the model with actual implementation"""
|
156 |
+
# Check if model is loaded
|
157 |
+
is_loaded, message = check_model_loaded()
|
158 |
+
if not is_loaded:
|
159 |
+
return message
|
160 |
+
|
161 |
+
if not dataset_text.strip():
|
162 |
+
return "β Please provide training data."
|
163 |
+
|
164 |
+
try:
|
165 |
+
# Prepare dataset
|
166 |
+
dataset, prep_message = prepare_training_dataset(dataset_text)
|
167 |
+
if dataset is None:
|
168 |
+
return prep_message
|
169 |
+
|
170 |
+
progress_updates = []
|
171 |
+
progress_updates.append(f"π Starting training process...")
|
172 |
+
progress_updates.append(f"π {prep_message}")
|
173 |
+
yield "\n".join(progress_updates)
|
174 |
+
|
175 |
+
# Training arguments
|
176 |
+
output_dir = f"./results-{int(time.time())}"
|
177 |
+
training_args = TrainingArguments(
|
178 |
+
output_dir=output_dir,
|
179 |
+
num_train_epochs=epochs,
|
180 |
+
learning_rate=float(learning_rate),
|
181 |
+
per_device_train_batch_size=batch_size,
|
182 |
+
gradient_accumulation_steps=4,
|
183 |
+
warmup_steps=50,
|
184 |
+
logging_steps=10,
|
185 |
+
save_steps=200,
|
186 |
+
save_total_limit=2,
|
187 |
+
)
|
188 |
+
|
189 |
+
# Initialize trainer
|
190 |
+
trainer = Trainer(
|
191 |
+
model=MODEL,
|
192 |
+
args=training_args,
|
193 |
+
train_dataset=dataset,
|
194 |
+
)
|
195 |
+
|
196 |
+
progress_updates.append(f"π Starting training for {epochs} epoch(s) with learning rate {learning_rate}...")
|
197 |
+
yield "\n".join(progress_updates)
|
198 |
+
|
199 |
+
# Train the model
|
200 |
+
train_result = trainer.train()
|
201 |
+
|
202 |
+
progress_updates.append(f"β
Training complete!")
|
203 |
+
progress_updates.append(f"π Training Loss: {train_result.training_loss:.4f}")
|
204 |
+
progress_updates.append(f"β±οΈ Training Time: {train_result.metrics['train_runtime']:.2f} seconds")
|
205 |
+
|
206 |
+
# Save model if requested
|
207 |
+
if save_model:
|
208 |
+
model_save_dir = f"./trained-model-{int(time.time())}"
|
209 |
+
trainer.save_model(model_save_dir)
|
210 |
+
TOKENIZER.save_pretrained(model_save_dir)
|
211 |
+
|
212 |
+
progress_updates.append(f"πΎ Model saved to {model_save_dir}")
|
213 |
+
progress_updates.append(f"π To use this model, you can upload it to the Hugging Face Hub using the 'Upload Model' tab.")
|
214 |
+
|
215 |
+
progress_updates.append("\nπ‘ RECOMMENDATIONS AFTER TRAINING:")
|
216 |
+
progress_updates.append("1. Test the model with new prompts to see how it performs")
|
217 |
+
progress_updates.append("2. If results aren't satisfactory, try adjusting hyperparameters or training for more epochs")
|
218 |
+
progress_updates.append("3. Consider increasing the dataset size for better results")
|
219 |
+
|
220 |
+
yield "\n".join(progress_updates)
|
221 |
+
|
222 |
+
except Exception as e:
|
223 |
+
return f"β Training failed: {str(e)}"
|
224 |
+
|
225 |
+
@spaces.GPU
|
226 |
+
def evaluate_model(test_data, metric_choice="perplexity"):
|
227 |
+
"""Evaluate the model on test data"""
|
228 |
+
# Check if model is loaded
|
229 |
+
is_loaded, message = check_model_loaded()
|
230 |
+
if not is_loaded:
|
231 |
+
return message
|
232 |
+
|
233 |
+
if not test_data.strip():
|
234 |
+
return "β Please provide test data."
|
235 |
+
|
236 |
+
try:
|
237 |
+
# Split test data into examples
|
238 |
+
test_examples = [example.strip() for example in test_data.split("\n") if example.strip()]
|
239 |
+
|
240 |
+
results = []
|
241 |
+
total_perplexity = 0
|
242 |
+
|
243 |
+
for i, example in enumerate(test_examples):
|
244 |
+
inputs = TOKENIZER(example, return_tensors="pt").to(MODEL.device)
|
245 |
+
|
246 |
+
with torch.no_grad():
|
247 |
+
outputs = MODEL(**inputs, labels=inputs["input_ids"])
|
248 |
+
loss = outputs.loss.item()
|
249 |
+
perplexity = torch.exp(torch.tensor(loss)).item()
|
250 |
+
|
251 |
+
total_perplexity += perplexity
|
252 |
+
results.append(f"Example {i+1} - Perplexity: {perplexity:.4f}")
|
253 |
+
|
254 |
+
avg_perplexity = total_perplexity / len(test_examples)
|
255 |
+
|
256 |
+
final_result = "\n".join(results)
|
257 |
+
final_result += f"\n\nπ Average Perplexity: {avg_perplexity:.4f}"
|
258 |
+
|
259 |
+
# Add recommendations
|
260 |
+
final_result += "\n\nπ‘ RECOMMENDATIONS AFTER EVALUATION:"
|
261 |
+
final_result += "\n1. Lower perplexity indicates better model performance"
|
262 |
+
final_result += "\n2. If perplexity is high, consider additional training or fine-tuning"
|
263 |
+
final_result += "\n3. Try comparing results across different model versions"
|
264 |
+
|
265 |
+
return final_result
|
266 |
+
|
267 |
+
except Exception as e:
|
268 |
+
return f"β Evaluation failed: {str(e)}"
|
269 |
+
|
270 |
+
def upload_model_to_hub(model_dir, repo_name, token):
|
271 |
+
"""Upload trained model to HuggingFace Hub"""
|
272 |
+
if not os.path.exists(model_dir):
|
273 |
+
return "β Model directory not found. Please train a model first."
|
274 |
+
|
275 |
+
if not repo_name.strip():
|
276 |
+
return "β Please provide a repository name."
|
277 |
+
|
278 |
+
if not token.strip():
|
279 |
+
return "β Please provide your HuggingFace token."
|
280 |
+
|
281 |
+
try:
|
282 |
+
api = HfApi()
|
283 |
+
|
284 |
+
# Create the repo if it doesn't exist
|
285 |
+
try:
|
286 |
+
api.create_repo(repo_id=repo_name, token=token, exist_ok=True)
|
287 |
+
except Exception as e:
|
288 |
+
return f"β Failed to create repository: {str(e)}"
|
289 |
+
|
290 |
+
# Upload the model files
|
291 |
+
api.upload_folder(
|
292 |
+
folder_path=model_dir,
|
293 |
+
repo_id=repo_name,
|
294 |
+
token=token,
|
295 |
+
commit_message=f"Upload trained model from Spaces"
|
296 |
+
)
|
297 |
+
|
298 |
+
response = f"β
Model successfully uploaded to {repo_name}!"
|
299 |
+
response += "\n\nπ‘ RECOMMENDATIONS AFTER UPLOADING:"
|
300 |
+
response += "\n1. You can now use this model in other applications by referencing its name"
|
301 |
+
response += f"\n2. Try using it: `from transformers import AutoModel; model = AutoModel.from_pretrained('{repo_name}')`"
|
302 |
+
response += "\n3. Share the model with others who might find it useful"
|
303 |
+
|
304 |
+
return response
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
return f"β Upload failed: {str(e)}"
|
308 |
+
|
309 |
+
def model_info():
|
310 |
+
"""Display information about the loaded model"""
|
311 |
+
if not MODEL_LOADED or MODEL is None:
|
312 |
+
return "β Model not loaded. Please load the model first."
|
313 |
+
|
314 |
+
info = f"# Model Information\n\n"
|
315 |
+
info += f"- **Model Name**: {MODEL_NAME}\n"
|
316 |
+
info += f"- **Model Type**: {MODEL_TYPE}\n"
|
317 |
+
info += f"- **Loading Time**: {MODEL_LOADING_TIME:.2f} seconds\n\n"
|
318 |
+
|
319 |
+
# Get model parameters
|
320 |
+
total_params = sum(p.numel() for p in MODEL.parameters())
|
321 |
+
trainable_params = sum(p.numel() for p in MODEL.parameters() if p.requires_grad)
|
322 |
+
|
323 |
+
info += f"- **Total Parameters**: {total_params:,}\n"
|
324 |
+
info += f"- **Trainable Parameters**: {trainable_params:,}\n"
|
325 |
+
info += f"- **Model Device**: {next(MODEL.parameters()).device}\n\n"
|
326 |
+
|
327 |
+
# Get tokenizer info
|
328 |
+
vocab_size = len(TOKENIZER)
|
329 |
+
info += f"- **Tokenizer Vocabulary Size**: {vocab_size:,}\n"
|
330 |
+
info += f"- **Padding Token**: `{TOKENIZER.pad_token}`\n"
|
331 |
+
info += f"- **EOS Token**: `{TOKENIZER.eos_token}`\n\n"
|
332 |
+
|
333 |
+
info += "## Model Usage Recommendations\n\n"
|
334 |
+
info += "1. **Testing**: Start with simple prompts to test the model's capabilities\n"
|
335 |
+
info += "2. **Training**: Use domain-specific data for best results\n"
|
336 |
+
info += "3. **Evaluation**: Regularly evaluate to track improvement\n"
|
337 |
+
info += "4. **Parameters**: Experiment with temperature (0.7-1.0) for creative tasks, lower (0.2-0.5) for factual responses\n"
|
338 |
+
|
339 |
+
return info
|
340 |
|
341 |
# Create Gradio interface
|
342 |
+
with gr.Blocks(title=f"{MODEL_NAME} Advanced Space", theme=gr.themes.Soft()) as iface:
|
343 |
+
gr.Markdown(f"# {MODEL_NAME} Advanced Training Space")
|
344 |
+
gr.Markdown("This space provides advanced functionality for training, testing, and using language models with ZeroGPU acceleration.")
|
345 |
+
|
346 |
+
# Load model section - must be done first
|
347 |
+
with gr.Box():
|
348 |
+
gr.Markdown("### π Step 1: Load Model (Required)")
|
349 |
+
with gr.Row():
|
350 |
+
with gr.Column():
|
351 |
+
load_btn = gr.Button("π₯ Load Model", variant="primary", size="lg")
|
352 |
+
gr.Markdown("β οΈ You must load the model before using any features below")
|
353 |
+
with gr.Column():
|
354 |
+
model_loading_output = gr.Markdown("Model not loaded. Click the button to load.")
|
355 |
+
|
356 |
+
# Connect the load button
|
357 |
+
load_btn.click(fn=load_model, outputs=model_loading_output)
|
358 |
+
|
359 |
+
# Model Info Tab
|
360 |
+
with gr.Accordion("βΉοΈ Model Information", open=False):
|
361 |
+
model_info_output = gr.Markdown("Load the model to see information")
|
362 |
+
model_info_btn = gr.Button("π Show Model Information")
|
363 |
+
model_info_btn.click(fn=model_info, outputs=model_info_output)
|
364 |
|
365 |
+
# Main functionality tabs
|
366 |
with gr.Tabs():
|
367 |
# Test Tab
|
368 |
with gr.TabItem("π§ͺ Test Model"):
|
369 |
+
gr.Markdown("### Generate text with the model")
|
370 |
with gr.Row():
|
371 |
with gr.Column():
|
372 |
test_input = gr.Textbox(
|
373 |
+
label="Input Prompt",
|
374 |
placeholder="Enter text to test the model...",
|
375 |
lines=3
|
376 |
)
|
377 |
+
with gr.Row():
|
378 |
+
max_length_slider = gr.Slider(
|
379 |
+
minimum=10,
|
380 |
+
maximum=1000,
|
381 |
+
value=100,
|
382 |
+
step=10,
|
383 |
+
label="Max Output Length"
|
384 |
+
)
|
385 |
+
temperature_slider = gr.Slider(
|
386 |
+
minimum=0.1,
|
387 |
+
maximum=2.0,
|
388 |
+
value=0.7,
|
389 |
+
label="Temperature"
|
390 |
+
)
|
391 |
+
with gr.Row():
|
392 |
+
top_p_slider = gr.Slider(
|
393 |
+
minimum=0.1,
|
394 |
+
maximum=1.0,
|
395 |
+
value=0.9,
|
396 |
+
step=0.05,
|
397 |
+
label="Top-p (nucleus sampling)"
|
398 |
+
)
|
399 |
+
repetition_penalty_slider = gr.Slider(
|
400 |
+
minimum=1.0,
|
401 |
+
maximum=2.0,
|
402 |
+
value=1.2,
|
403 |
+
step=0.05,
|
404 |
+
label="Repetition Penalty"
|
405 |
+
)
|
406 |
test_btn = gr.Button("π Generate", variant="primary")
|
407 |
|
408 |
with gr.Column():
|
409 |
test_output = gr.Textbox(
|
410 |
+
label="Generated Output",
|
411 |
+
lines=8,
|
412 |
interactive=False
|
413 |
)
|
414 |
+
gr.Markdown("""
|
415 |
+
### Parameter Guide
|
416 |
+
- **Temperature**: Higher values (>1) make output more random, lower values (<1) make it more focused and deterministic
|
417 |
+
- **Top-p**: Controls diversity by limiting tokens to the most probable ones that sum to probability p
|
418 |
+
- **Repetition Penalty**: Penalizes repetition of words/phrases (higher values reduce repetition)
|
419 |
+
""")
|
420 |
|
421 |
test_btn.click(
|
422 |
+
fn=generate_text,
|
423 |
+
inputs=[test_input, max_length_slider, temperature_slider, top_p_slider, repetition_penalty_slider],
|
424 |
outputs=test_output
|
425 |
)
|
426 |
|
427 |
# Train Tab
|
428 |
with gr.TabItem("ποΈ Train Model"):
|
429 |
+
gr.Markdown("### Train or fine-tune the model on your data")
|
430 |
train_dataset = gr.Textbox(
|
431 |
label="Training Dataset",
|
432 |
+
placeholder="Enter training examples, one per line...",
|
433 |
+
lines=8
|
434 |
)
|
435 |
with gr.Row():
|
436 |
+
train_epochs = gr.Number(label="Epochs", value=1, minimum=1, maximum=10)
|
437 |
+
train_lr = gr.Number(label="Learning Rate", value=2e-5, minimum=1e-6, maximum=1e-3)
|
438 |
+
train_batch = gr.Number(label="Batch Size", value=2, minimum=1, maximum=8)
|
439 |
|
440 |
+
train_save_model = gr.Checkbox(label="Save trained model locally", value=True)
|
441 |
train_btn = gr.Button("π Start Training", variant="primary")
|
442 |
+
train_output = gr.Textbox(label="Training Progress", lines=10, interactive=False)
|
443 |
|
444 |
train_btn.click(
|
445 |
fn=train_model,
|
446 |
+
inputs=[train_dataset, train_epochs, train_lr, train_batch, train_save_model],
|
447 |
outputs=train_output
|
448 |
)
|
449 |
|
450 |
+
# Evaluate Tab
|
451 |
+
with gr.TabItem("π Evaluate Model"):
|
452 |
+
gr.Markdown("### Evaluate model performance on test data")
|
453 |
+
eval_dataset = gr.Textbox(
|
454 |
+
label="Test Dataset",
|
455 |
+
placeholder="Enter test examples, one per line...",
|
456 |
+
lines=8
|
457 |
+
)
|
458 |
+
|
459 |
+
with gr.Row():
|
460 |
+
metric_choice = gr.Radio(
|
461 |
+
["perplexity", "accuracy"],
|
462 |
+
label="Evaluation Metric",
|
463 |
+
value="perplexity"
|
464 |
+
)
|
465 |
+
|
466 |
+
eval_btn = gr.Button("π Evaluate", variant="primary")
|
467 |
+
eval_output = gr.Textbox(label="Evaluation Results", lines=8, interactive=False)
|
468 |
+
|
469 |
+
eval_btn.click(
|
470 |
+
fn=evaluate_model,
|
471 |
+
inputs=[eval_dataset, metric_choice],
|
472 |
+
outputs=eval_output
|
473 |
)
|
474 |
+
|
475 |
+
# Upload Tab
|
476 |
+
with gr.TabItem("π€ Upload Model"):
|
477 |
+
gr.Markdown("### Upload trained models to HuggingFace Hub")
|
478 |
with gr.Row():
|
479 |
+
model_dir_input = gr.Textbox(
|
480 |
+
label="Model Directory",
|
481 |
+
placeholder="./trained-model-1234567890",
|
482 |
+
lines=1
|
483 |
+
)
|
484 |
+
repo_name_input = gr.Textbox(
|
485 |
+
label="Repository Name",
|
486 |
+
placeholder="username/model-name",
|
487 |
+
lines=1
|
488 |
+
)
|
489 |
+
|
490 |
+
hf_token_input = gr.Textbox(
|
491 |
+
label="HuggingFace Token",
|
492 |
+
placeholder="hf_...",
|
493 |
+
type="password",
|
494 |
+
lines=1
|
495 |
+
)
|
496 |
|
497 |
+
upload_btn = gr.Button("π€ Upload to Hub", variant="primary")
|
498 |
+
upload_output = gr.Textbox(label="Upload Status", lines=5, interactive=False)
|
499 |
|
500 |
+
upload_btn.click(
|
501 |
+
fn=upload_model_to_hub,
|
502 |
+
inputs=[model_dir_input, repo_name_input, hf_token_input],
|
503 |
+
outputs=upload_output
|
504 |
)
|
505 |
+
|
506 |
+
# Footer with recommendations
|
507 |
+
gr.Markdown("""
|
508 |
+
## π‘ Recommendations for Working with this Model
|
509 |
+
|
510 |
+
### After Loading the Model:
|
511 |
+
1. **Start by testing**: Use the Test tab with simple prompts to understand the model's capabilities
|
512 |
+
2. **Evaluate baseline performance**: Run an evaluation on sample data before any training
|
513 |
+
|
514 |
+
### For Training:
|
515 |
+
1. **Start small**: Begin with a small dataset and 1-2 epochs to test the training process
|
516 |
+
2. **Use domain-specific data**: For best results, use data from your target domain
|
517 |
+
3. **Monitor training loss**: If loss isn't decreasing, try adjusting the learning rate
|
518 |
+
|
519 |
+
### For Evaluation:
|
520 |
+
1. **Use diverse test examples**: Include both simple and complex examples in your test set
|
521 |
+
2. **Compare before/after**: Evaluate before and after training to measure improvement
|
522 |
+
|
523 |
+
### For Model Upload:
|
524 |
+
1. **Use descriptive repo names**: Include model type and purpose in the repository name
|
525 |
+
2. **Document your changes**: Add a good description when uploading your model
|
526 |
+
|
527 |
+
### General Tips:
|
528 |
+
1. **Save checkpoints**: Always save your model after significant training
|
529 |
+
2. **Track experiments**: Keep notes on hyperparameters and results
|
530 |
+
3. **Start simple**: Master basic usage before attempting complex tasks
|
531 |
+
""")
|
532 |
|
533 |
if __name__ == "__main__":
|
534 |
iface.launch()
|
requirements.txt
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
gradio
|
2 |
spaces
|
3 |
-
torch
|
4 |
-
transformers
|
5 |
-
datasets
|
6 |
-
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.36.1
|
2 |
spaces
|
3 |
+
torch>=2.0.0
|
4 |
+
transformers>=4.30.0
|
5 |
+
datasets>=2.13.0
|
6 |
+
huggingface_hub>=0.16.0
|
7 |
+
numpy>=1.24.0
|
8 |
+
accelerate>=0.21.0
|
9 |
+
scikit-learn>=1.2.2
|