Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ import importlib
|
|
| 15 |
|
| 16 |
# ---------------- Configuration ----------------
|
| 17 |
MODEL_ID = os.getenv("MODEL_ID", "tasal9/ZamAI-mT5-Pashto")
|
| 18 |
-
CACHE_DIR = os.getenv("HF_HOME", None)
|
| 19 |
HEALTH_PORT = int(os.getenv("HEALTH_PORT", "8080"))
|
| 20 |
GRADIO_HOST = os.getenv("GRADIO_HOST", "0.0.0.0")
|
| 21 |
GRADIO_PORT = int(os.getenv("GRADIO_PORT", "7860"))
|
|
@@ -23,7 +23,8 @@ DEFAULT_MAX_NEW_TOKENS = int(os.getenv("DEFAULT_MAX_NEW_TOKENS", "128"))
|
|
| 23 |
|
| 24 |
|
| 25 |
# ---------------- Logging ----------------
|
| 26 |
-
|
|
|
|
| 27 |
logger = logging.getLogger("zamai-app")
|
| 28 |
|
| 29 |
|
|
@@ -40,6 +41,7 @@ SAMPLE_INSTRUCTIONS = [
|
|
| 40 |
|
| 41 |
|
| 42 |
def _start_health_server(port: int):
|
|
|
|
| 43 |
class HealthHandler(http.server.SimpleHTTPRequestHandler):
|
| 44 |
def do_GET(self):
|
| 45 |
if self.path == "/health":
|
|
@@ -52,14 +54,19 @@ def _start_health_server(port: int):
|
|
| 52 |
self.end_headers()
|
| 53 |
|
| 54 |
def _serve():
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
threading.Thread(target=_serve, daemon=True)
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def _detect_device() -> int:
|
|
|
|
| 63 |
try:
|
| 64 |
if torch.cuda.is_available():
|
| 65 |
logger.info("CUDA available; using GPU device 0")
|
|
@@ -75,8 +82,40 @@ def get_generator(model_id: str = MODEL_ID, cache_dir: Optional[str] = CACHE_DIR
|
|
| 75 |
device = _detect_device()
|
| 76 |
logger.info("Loading tokenizer and model: %s (device=%s)", model_id, device)
|
| 77 |
|
| 78 |
-
tokenizer =
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
return gen
|
| 81 |
|
| 82 |
|
|
@@ -88,28 +127,47 @@ def predict(instruction: str,
|
|
| 88 |
temperature: float,
|
| 89 |
top_p: float,
|
| 90 |
num_return_sequences: int):
|
| 91 |
-
|
| 92 |
if not instruction or not instruction.strip():
|
| 93 |
-
return "⚠️ مهرباني وکړئ یوه لارښوونه ولیکئ."
|
| 94 |
|
| 95 |
-
#
|
| 96 |
prompt = instruction.strip()
|
| 97 |
-
if input_text:
|
| 98 |
prompt += "\n" + input_text.strip()
|
| 99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
try:
|
| 101 |
gen = get_generator()
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
return "\n\n---\n\n".join(texts)
|
| 114 |
|
| 115 |
except Exception as e:
|
|
@@ -119,7 +177,13 @@ def predict(instruction: str,
|
|
| 119 |
|
| 120 |
def build_ui():
|
| 121 |
with gr.Blocks() as demo:
|
| 122 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
with gr.Row():
|
| 125 |
with gr.Column(scale=2):
|
|
@@ -129,17 +193,21 @@ def build_ui():
|
|
| 129 |
value=SAMPLE_INSTRUCTIONS[0],
|
| 130 |
interactive=True,
|
| 131 |
)
|
| 132 |
-
instruction_textbox = gr.Textbox(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
input_text = gr.Textbox(lines=2, placeholder="اختیاري متن...", label="متن")
|
| 134 |
output = gr.Textbox(label="ځواب", interactive=False, lines=8)
|
| 135 |
generate_btn = gr.Button("جوړول", variant="primary")
|
| 136 |
|
| 137 |
with gr.Column(scale=1):
|
| 138 |
gr.Markdown("### د تولید تنظیمات")
|
| 139 |
-
max_new_tokens = gr.Slider(16, 512, value=DEFAULT_MAX_NEW_TOKENS, step=1, label="اعظمي نوي ټوکنونه")
|
| 140 |
-
num_beams = gr.Slider(1, 8, value=2, step=1, label="شمیر شعاعونه")
|
| 141 |
-
do_sample = gr.Checkbox(label="نمونې فعال کړئ", value=True)
|
| 142 |
-
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="تودوخه")
|
| 143 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
|
| 144 |
num_return_sequences = gr.Slider(1, 4, value=1, step=1, label="د راګرځېدونکو تسلسلو شمېر")
|
| 145 |
|
|
@@ -156,6 +224,10 @@ def build_ui():
|
|
| 156 |
|
| 157 |
if __name__ == "__main__":
|
| 158 |
logger.info("Starting ZamAI mT5 Pashto Demo (model=%s)", MODEL_ID)
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
demo = build_ui()
|
| 161 |
demo.launch(server_name=GRADIO_HOST, server_port=GRADIO_PORT)
|
|
|
|
| 15 |
|
| 16 |
# ---------------- Configuration ----------------
|
| 17 |
MODEL_ID = os.getenv("MODEL_ID", "tasal9/ZamAI-mT5-Pashto")
|
| 18 |
+
CACHE_DIR = os.getenv("HF_HOME", None) # optional cache dir for transformers
|
| 19 |
HEALTH_PORT = int(os.getenv("HEALTH_PORT", "8080"))
|
| 20 |
GRADIO_HOST = os.getenv("GRADIO_HOST", "0.0.0.0")
|
| 21 |
GRADIO_PORT = int(os.getenv("GRADIO_PORT", "7860"))
|
|
|
|
| 23 |
|
| 24 |
|
| 25 |
# ---------------- Logging ----------------
|
| 26 |
+
LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO").upper()
|
| 27 |
+
logging.basicConfig(level=LOG_LEVEL, format="%(asctime)s %(levelname)s %(message)s")
|
| 28 |
logger = logging.getLogger("zamai-app")
|
| 29 |
|
| 30 |
|
|
|
|
| 41 |
|
| 42 |
|
| 43 |
def _start_health_server(port: int):
|
| 44 |
+
"""Start a tiny HTTP server that responds 200 to /health on a background thread."""
|
| 45 |
class HealthHandler(http.server.SimpleHTTPRequestHandler):
|
| 46 |
def do_GET(self):
|
| 47 |
if self.path == "/health":
|
|
|
|
| 54 |
self.end_headers()
|
| 55 |
|
| 56 |
def _serve():
|
| 57 |
+
try:
|
| 58 |
+
with socketserver.TCPServer(("", int(port)), HealthHandler) as httpd:
|
| 59 |
+
logger.info("Health endpoint listening on port %s", port)
|
| 60 |
+
httpd.serve_forever()
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.exception("Health server failed: %s", e)
|
| 63 |
|
| 64 |
+
t = threading.Thread(target=_serve, daemon=True)
|
| 65 |
+
t.start()
|
| 66 |
|
| 67 |
|
| 68 |
def _detect_device() -> int:
|
| 69 |
+
# return device id for transformers pipeline: -1 for CPU or 0..N for CUDA
|
| 70 |
try:
|
| 71 |
if torch.cuda.is_available():
|
| 72 |
logger.info("CUDA available; using GPU device 0")
|
|
|
|
| 82 |
device = _detect_device()
|
| 83 |
logger.info("Loading tokenizer and model: %s (device=%s)", model_id, device)
|
| 84 |
|
| 85 |
+
tokenizer = None
|
| 86 |
+
local_model_path = None
|
| 87 |
+
try:
|
| 88 |
+
hf = importlib.import_module("huggingface_hub")
|
| 89 |
+
snapshot_download = getattr(hf, "snapshot_download", None)
|
| 90 |
+
if snapshot_download:
|
| 91 |
+
try:
|
| 92 |
+
logger.info("Attempting to snapshot_download model %s to cache_dir=%s", model_id, cache_dir)
|
| 93 |
+
local_model_path = snapshot_download(repo_id=model_id, cache_dir=cache_dir, repo_type="model")
|
| 94 |
+
if local_model_path:
|
| 95 |
+
local_model_path = str(local_model_path)
|
| 96 |
+
logger.info("Model snapshot downloaded to %s", local_model_path)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
logger.warning("snapshot_download failed for %s: %s", model_id, e)
|
| 99 |
+
local_model_path = None
|
| 100 |
+
except Exception:
|
| 101 |
+
logger.debug("huggingface_hub not available; falling back to AutoTokenizer.from_pretrained")
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
if local_model_path:
|
| 105 |
+
tokenizer = AutoTokenizer.from_pretrained(local_model_path, use_fast=False, cache_dir=cache_dir)
|
| 106 |
+
else:
|
| 107 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=False, cache_dir=cache_dir)
|
| 108 |
+
logger.info("Loaded tokenizer for %s", model_id)
|
| 109 |
+
except Exception as e2:
|
| 110 |
+
logger.exception("Failed to load tokenizer for %s: %s", model_id, e2)
|
| 111 |
+
raise
|
| 112 |
+
|
| 113 |
+
gen = pipeline(
|
| 114 |
+
"text2text-generation",
|
| 115 |
+
model=model_id,
|
| 116 |
+
tokenizer=tokenizer,
|
| 117 |
+
device=device,
|
| 118 |
+
)
|
| 119 |
return gen
|
| 120 |
|
| 121 |
|
|
|
|
| 127 |
temperature: float,
|
| 128 |
top_p: float,
|
| 129 |
num_return_sequences: int):
|
| 130 |
+
"""Generate text using the cached pipeline and return output or error message."""
|
| 131 |
if not instruction or not instruction.strip():
|
| 132 |
+
return "⚠️ مهرباني وکړئ یوه لارښوونه ولیکئ." # please provide an instruction
|
| 133 |
|
| 134 |
+
# Build a simple prompt: instruction (+ input if provided)
|
| 135 |
prompt = instruction.strip()
|
| 136 |
+
if input_text and input_text.strip():
|
| 137 |
prompt += "\n" + input_text.strip()
|
| 138 |
|
| 139 |
+
def _filter_generation_kwargs(kwargs: dict) -> dict:
|
| 140 |
+
allowed = {
|
| 141 |
+
"max_new_tokens",
|
| 142 |
+
"num_beams",
|
| 143 |
+
"do_sample",
|
| 144 |
+
"temperature",
|
| 145 |
+
"top_p",
|
| 146 |
+
"num_return_sequences",
|
| 147 |
+
}
|
| 148 |
+
return {k: v for k, v in kwargs.items() if k in allowed}
|
| 149 |
+
|
| 150 |
try:
|
| 151 |
gen = get_generator()
|
| 152 |
+
gen_kwargs = {
|
| 153 |
+
"max_new_tokens": int(max_new_tokens),
|
| 154 |
+
"num_beams": int(num_beams) if not do_sample else 1,
|
| 155 |
+
"do_sample": bool(do_sample),
|
| 156 |
+
"temperature": float(temperature),
|
| 157 |
+
"top_p": float(top_p),
|
| 158 |
+
"num_return_sequences": max(1, int(num_return_sequences)),
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
gen_kwargs = _filter_generation_kwargs(gen_kwargs)
|
| 162 |
+
outputs = gen(prompt, **gen_kwargs)
|
| 163 |
+
|
| 164 |
+
texts = []
|
| 165 |
+
for out in outputs if isinstance(outputs, list) else [outputs]:
|
| 166 |
+
text = out.get("generated_text", "").strip()
|
| 167 |
+
texts.append(text)
|
| 168 |
+
|
| 169 |
+
if not texts:
|
| 170 |
+
return "⚠️ No response generated."
|
| 171 |
return "\n\n---\n\n".join(texts)
|
| 172 |
|
| 173 |
except Exception as e:
|
|
|
|
| 177 |
|
| 178 |
def build_ui():
|
| 179 |
with gr.Blocks() as demo:
|
| 180 |
+
gr.Markdown(
|
| 181 |
+
"""
|
| 182 |
+
# ZamAI mT5 Pashto Demo
|
| 183 |
+
اپلیکیشن **ZamAI-mT5-Pashto** د پښتو لارښوونو لپاره.
|
| 184 |
+
لاندې تنظیمات بدل کړئ او لارښوونه ولیکئ ترڅو ځواب ترلاسه کړئ.
|
| 185 |
+
"""
|
| 186 |
+
)
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column(scale=2):
|
|
|
|
| 193 |
value=SAMPLE_INSTRUCTIONS[0],
|
| 194 |
interactive=True,
|
| 195 |
)
|
| 196 |
+
instruction_textbox = gr.Textbox(
|
| 197 |
+
lines=3,
|
| 198 |
+
placeholder="دلته لارښوونه ولیکئ...",
|
| 199 |
+
label="لارښوونه",
|
| 200 |
+
)
|
| 201 |
input_text = gr.Textbox(lines=2, placeholder="اختیاري متن...", label="متن")
|
| 202 |
output = gr.Textbox(label="ځواب", interactive=False, lines=8)
|
| 203 |
generate_btn = gr.Button("جوړول", variant="primary")
|
| 204 |
|
| 205 |
with gr.Column(scale=1):
|
| 206 |
gr.Markdown("### د تولید تنظیمات")
|
| 207 |
+
max_new_tokens = gr.Slider(16, 512, value=DEFAULT_MAX_NEW_TOKENS, step=1, label="اعظمي نوي ټوکنونه (max_new_tokens)")
|
| 208 |
+
num_beams = gr.Slider(1, 8, value=2, step=1, label="شمیر شعاعونه (num_beams)")
|
| 209 |
+
do_sample = gr.Checkbox(label="نمونې فعال کړئ (do_sample)", value=True)
|
| 210 |
+
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.05, label="تودوخه (temperature)")
|
| 211 |
top_p = gr.Slider(0.1, 1.0, value=0.9, step=0.01, label="Top-p")
|
| 212 |
num_return_sequences = gr.Slider(1, 4, value=1, step=1, label="د راګرځېدونکو تسلسلو شمېر")
|
| 213 |
|
|
|
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
| 226 |
logger.info("Starting ZamAI mT5 Pashto Demo (model=%s)", MODEL_ID)
|
| 227 |
+
try:
|
| 228 |
+
_start_health_server(HEALTH_PORT)
|
| 229 |
+
except Exception:
|
| 230 |
+
logger.exception("Failed to start health server")
|
| 231 |
+
|
| 232 |
demo = build_ui()
|
| 233 |
demo.launch(server_name=GRADIO_HOST, server_port=GRADIO_PORT)
|