Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
-
import torch
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import pipeline, AutoTokenizer
|
| 4 |
from functools import lru_cache
|
| 5 |
|
| 6 |
-
MODEL_ID = "tasal9/ZamAI-mT5-Pashto"
|
| 7 |
|
| 8 |
SAMPLE_INSTRUCTIONS = [
|
| 9 |
"په پښتو کې د خپل نوم او د عمر معلومات ولیکئ.",
|
|
@@ -17,53 +16,52 @@ SAMPLE_INSTRUCTIONS = [
|
|
| 17 |
|
| 18 |
def generate_prompt(instruction, input_text=""):
|
| 19 |
if input_text:
|
| 20 |
-
return f"
|
| 21 |
else:
|
| 22 |
-
return f"
|
| 23 |
|
| 24 |
-
# Cache the pipeline for performance
|
| 25 |
@lru_cache(maxsize=1)
|
| 26 |
def get_generator():
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
try:
|
| 30 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id_str, use_fast=False)
|
| 31 |
-
except Exception as e:
|
| 32 |
-
raise ValueError(f"Failed to load tokenizer for {model_id_str}: {e}")
|
| 33 |
-
|
| 34 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 35 |
return pipeline(
|
| 36 |
"text2text-generation",
|
| 37 |
-
model=
|
| 38 |
-
tokenizer=
|
| 39 |
-
device
|
|
|
|
| 40 |
use_fast=False
|
| 41 |
)
|
| 42 |
|
| 43 |
def predict(instruction, input_text, max_length, num_beams, temperature, top_p):
|
| 44 |
gen = get_generator()
|
| 45 |
prompt = generate_prompt(instruction, input_text)
|
|
|
|
| 46 |
outputs = gen(
|
| 47 |
prompt,
|
| 48 |
max_length=max_length,
|
| 49 |
num_beams=num_beams,
|
| 50 |
temperature=temperature,
|
| 51 |
top_p=top_p,
|
|
|
|
| 52 |
early_stopping=True
|
| 53 |
)
|
| 54 |
-
|
| 55 |
generated = outputs[0]["generated_text"].strip()
|
| 56 |
-
# Remove the prompt from the generated text if present
|
| 57 |
-
if generated.startswith(prompt):
|
| 58 |
-
generated = generated[len(prompt):].strip()
|
| 59 |
-
return generated if generated else "No response generated."
|
| 60 |
|
| 61 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
with gr.Blocks() as demo:
|
| 63 |
gr.Markdown(
|
| 64 |
"""
|
| 65 |
# ZamAI mT5 Pashto Demo
|
| 66 |
-
|
| 67 |
لاندې تنظیمات بدل کړئ او لارښوونه ولیکئ ترڅو ځواب ترلاسه کړئ.
|
| 68 |
"""
|
| 69 |
)
|
|
@@ -72,7 +70,7 @@ with gr.Blocks() as demo:
|
|
| 72 |
with gr.Column(scale=2):
|
| 73 |
instruction_dropdown = gr.Dropdown(
|
| 74 |
choices=SAMPLE_INSTRUCTIONS,
|
| 75 |
-
label="نمونې لارښوونې
|
| 76 |
value=SAMPLE_INSTRUCTIONS[0],
|
| 77 |
interactive=True
|
| 78 |
)
|
|
@@ -84,14 +82,17 @@ with gr.Blocks() as demo:
|
|
| 84 |
input_text = gr.Textbox(lines=2, placeholder="اختیاري متن...", label="متن")
|
| 85 |
output = gr.Textbox(label="ځواب", interactive=False, lines=5)
|
| 86 |
generate_btn = gr.Button("جوړول", variant="primary")
|
|
|
|
| 87 |
with gr.Column(scale=1):
|
| 88 |
-
gr.Markdown("### د تولید تنظیمات")
|
| 89 |
-
max_length = gr.Slider(32,
|
| 90 |
-
num_beams = gr.Slider(1,
|
| 91 |
-
temperature = gr.Slider(0.
|
| 92 |
-
top_p = gr.Slider(0.
|
| 93 |
|
| 94 |
-
instruction_dropdown.change(
|
|
|
|
|
|
|
| 95 |
|
| 96 |
generate_btn.click(
|
| 97 |
fn=predict,
|
|
@@ -100,4 +101,4 @@ with gr.Blocks() as demo:
|
|
| 100 |
)
|
| 101 |
|
| 102 |
if __name__ == "__main__":
|
| 103 |
-
demo.launch()
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline, AutoTokenizer
|
| 3 |
from functools import lru_cache
|
| 4 |
|
| 5 |
+
MODEL_ID = "tasal9/ZamAI-mT5-Pashto"
|
| 6 |
|
| 7 |
SAMPLE_INSTRUCTIONS = [
|
| 8 |
"په پښتو کې د خپل نوم او د عمر معلومات ولیکئ.",
|
|
|
|
| 16 |
|
| 17 |
def generate_prompt(instruction, input_text=""):
|
| 18 |
if input_text:
|
| 19 |
+
return f"### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:"
|
| 20 |
else:
|
| 21 |
+
return f"### Instruction:\n{instruction}\n\n### Response:"
|
| 22 |
|
|
|
|
| 23 |
@lru_cache(maxsize=1)
|
| 24 |
def get_generator():
|
| 25 |
+
# Always CPU in ZeroGPU
|
| 26 |
+
AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
return pipeline(
|
| 28 |
"text2text-generation",
|
| 29 |
+
model=MODEL_ID,
|
| 30 |
+
tokenizer=MODEL_ID,
|
| 31 |
+
device=-1, # Force CPU
|
| 32 |
+
return_full_text=False, # Avoids prompt repetition
|
| 33 |
use_fast=False
|
| 34 |
)
|
| 35 |
|
| 36 |
def predict(instruction, input_text, max_length, num_beams, temperature, top_p):
|
| 37 |
gen = get_generator()
|
| 38 |
prompt = generate_prompt(instruction, input_text)
|
| 39 |
+
|
| 40 |
outputs = gen(
|
| 41 |
prompt,
|
| 42 |
max_length=max_length,
|
| 43 |
num_beams=num_beams,
|
| 44 |
temperature=temperature,
|
| 45 |
top_p=top_p,
|
| 46 |
+
do_sample=True, # Sampling works better on CPU than beams
|
| 47 |
early_stopping=True
|
| 48 |
)
|
| 49 |
+
|
| 50 |
generated = outputs[0]["generated_text"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# Clean output
|
| 53 |
+
for cut in [prompt, "### Instruction:", "### Response:", "ځواب:"]:
|
| 54 |
+
if generated.startswith(cut):
|
| 55 |
+
generated = generated[len(cut):].strip()
|
| 56 |
+
|
| 57 |
+
return generated if generated else "⚠️ No response generated."
|
| 58 |
+
|
| 59 |
+
# ---------------- Gradio UI ----------------
|
| 60 |
with gr.Blocks() as demo:
|
| 61 |
gr.Markdown(
|
| 62 |
"""
|
| 63 |
# ZamAI mT5 Pashto Demo
|
| 64 |
+
اپلیکیشن **ZamAI-mT5-Pashto** د پښتو لارښوونو لپاره.
|
| 65 |
لاندې تنظیمات بدل کړئ او لارښوونه ولیکئ ترڅو ځواب ترلاسه کړئ.
|
| 66 |
"""
|
| 67 |
)
|
|
|
|
| 70 |
with gr.Column(scale=2):
|
| 71 |
instruction_dropdown = gr.Dropdown(
|
| 72 |
choices=SAMPLE_INSTRUCTIONS,
|
| 73 |
+
label="نمونې لارښوونې",
|
| 74 |
value=SAMPLE_INSTRUCTIONS[0],
|
| 75 |
interactive=True
|
| 76 |
)
|
|
|
|
| 82 |
input_text = gr.Textbox(lines=2, placeholder="اختیاري متن...", label="متن")
|
| 83 |
output = gr.Textbox(label="ځواب", interactive=False, lines=5)
|
| 84 |
generate_btn = gr.Button("جوړول", variant="primary")
|
| 85 |
+
|
| 86 |
with gr.Column(scale=1):
|
| 87 |
+
gr.Markdown("### د تولید تنظیمات (ZeroGPU)")
|
| 88 |
+
max_length = gr.Slider(32, 256, value=128, step=1, label="اعظمي اوږدوالی")
|
| 89 |
+
num_beams = gr.Slider(1, 3, value=2, step=1, label="شمیر شعاعونه")
|
| 90 |
+
temperature = gr.Slider(0.5, 1.5, value=1.0, step=0.1, label="تودوخه")
|
| 91 |
+
top_p = gr.Slider(0.7, 1.0, value=0.9, step=0.05, label="Top-p")
|
| 92 |
|
| 93 |
+
instruction_dropdown.change(
|
| 94 |
+
lambda x: x, inputs=instruction_dropdown, outputs=instruction_textbox
|
| 95 |
+
)
|
| 96 |
|
| 97 |
generate_btn.click(
|
| 98 |
fn=predict,
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
if __name__ == "__main__":
|
| 104 |
+
demo.launch()
|