Spaces:
Runtime error
Runtime error
Add Gradio app for ZamAI-Mistral-7B-Pashto with train/finetune/test
Browse files- README.md +15 -5
- app.py +145 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,22 @@
|
|
1 |
---
|
2 |
-
title: ZamAI
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: ZamAI-Mistral-7B-Pashto Training Space
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.36.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
hardware: zero-a10g
|
12 |
---
|
13 |
|
14 |
+
# ZamAI-Mistral-7B-Pashto Training Space
|
15 |
+
|
16 |
+
This space provides three main functionalities for the ZamAI-Mistral-7B-Pashto model:
|
17 |
+
|
18 |
+
1. **Train**: Train the model from scratch
|
19 |
+
2. **Fine-tune**: Fine-tune the existing model
|
20 |
+
3. **Test**: Test the model with sample inputs
|
21 |
+
|
22 |
+
The space uses ZeroGPU for efficient GPU computation.
|
app.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Model configuration
|
8 |
+
MODEL_NAME = "tasal9/ZamAI-Mistral-7B-Pashto"
|
9 |
+
|
10 |
+
@spaces.GPU
|
11 |
+
def load_model():
|
12 |
+
"""Load the model and tokenizer"""
|
13 |
+
try:
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16)
|
16 |
+
if tokenizer.pad_token is None:
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
18 |
+
return model, tokenizer
|
19 |
+
except Exception as e:
|
20 |
+
return None, None
|
21 |
+
|
22 |
+
@spaces.GPU
|
23 |
+
def test_model(input_text, max_length=100, temperature=0.7):
|
24 |
+
"""Test the model with given input"""
|
25 |
+
if not input_text.strip():
|
26 |
+
return "Please enter some text to test the model."
|
27 |
+
|
28 |
+
model, tokenizer = load_model()
|
29 |
+
|
30 |
+
if model is None or tokenizer is None:
|
31 |
+
return "β Failed to load model. Please check if the model exists on Hugging Face Hub."
|
32 |
+
|
33 |
+
try:
|
34 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = model.generate(
|
38 |
+
inputs,
|
39 |
+
max_length=len(inputs[0]) + max_length,
|
40 |
+
temperature=temperature,
|
41 |
+
do_sample=True,
|
42 |
+
pad_token_id=tokenizer.eos_token_id
|
43 |
+
)
|
44 |
+
|
45 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
+
return response[len(input_text):].strip()
|
47 |
+
|
48 |
+
except Exception as e:
|
49 |
+
return f"β Error during generation: {str(e)}"
|
50 |
+
|
51 |
+
def train_model(dataset_text, epochs=1, learning_rate=2e-5):
|
52 |
+
"""Train the model (placeholder implementation)"""
|
53 |
+
return f"π Training started with {epochs} epochs and learning rate {learning_rate}\n\nNote: This is a placeholder. Actual training requires dataset preparation and more computational resources."
|
54 |
+
|
55 |
+
def finetune_model(dataset_text, epochs=1, learning_rate=5e-5):
|
56 |
+
"""Fine-tune the model (placeholder implementation)"""
|
57 |
+
return f"π§ Fine-tuning started with {epochs} epochs and learning rate {learning_rate}\n\nNote: This is a placeholder. Actual fine-tuning requires dataset preparation and more computational resources."
|
58 |
+
|
59 |
+
# Create Gradio interface
|
60 |
+
with gr.Blocks(title="ZamAI-Mistral-7B-Pashto Training Space", theme=gr.themes.Soft()) as iface:
|
61 |
+
gr.Markdown(f"# ZamAI-Mistral-7B-Pashto Training Space")
|
62 |
+
gr.Markdown("Choose your operation: Train, Fine-tune, or Test the model")
|
63 |
+
|
64 |
+
with gr.Tabs():
|
65 |
+
# Test Tab
|
66 |
+
with gr.TabItem("π§ͺ Test Model"):
|
67 |
+
gr.Markdown("### Test the model with your input")
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
test_input = gr.Textbox(
|
71 |
+
label="Input Text",
|
72 |
+
placeholder="Enter text to test the model...",
|
73 |
+
lines=3
|
74 |
+
)
|
75 |
+
max_length_slider = gr.Slider(
|
76 |
+
minimum=10,
|
77 |
+
maximum=500,
|
78 |
+
value=100,
|
79 |
+
label="Max Length"
|
80 |
+
)
|
81 |
+
temperature_slider = gr.Slider(
|
82 |
+
minimum=0.1,
|
83 |
+
maximum=2.0,
|
84 |
+
value=0.7,
|
85 |
+
label="Temperature"
|
86 |
+
)
|
87 |
+
test_btn = gr.Button("π Generate", variant="primary")
|
88 |
+
|
89 |
+
with gr.Column():
|
90 |
+
test_output = gr.Textbox(
|
91 |
+
label="Model Output",
|
92 |
+
lines=5,
|
93 |
+
interactive=False
|
94 |
+
)
|
95 |
+
|
96 |
+
test_btn.click(
|
97 |
+
fn=test_model,
|
98 |
+
inputs=[test_input, max_length_slider, temperature_slider],
|
99 |
+
outputs=test_output
|
100 |
+
)
|
101 |
+
|
102 |
+
# Train Tab
|
103 |
+
with gr.TabItem("ποΈ Train Model"):
|
104 |
+
gr.Markdown("### Train the model from scratch")
|
105 |
+
train_dataset = gr.Textbox(
|
106 |
+
label="Training Dataset",
|
107 |
+
placeholder="Upload or paste your training data...",
|
108 |
+
lines=5
|
109 |
+
)
|
110 |
+
with gr.Row():
|
111 |
+
train_epochs = gr.Number(label="Epochs", value=1, minimum=1)
|
112 |
+
train_lr = gr.Number(label="Learning Rate", value=2e-5, minimum=1e-6)
|
113 |
+
|
114 |
+
train_btn = gr.Button("π Start Training", variant="primary")
|
115 |
+
train_output = gr.Textbox(label="Training Output", lines=5, interactive=False)
|
116 |
+
|
117 |
+
train_btn.click(
|
118 |
+
fn=train_model,
|
119 |
+
inputs=[train_dataset, train_epochs, train_lr],
|
120 |
+
outputs=train_output
|
121 |
+
)
|
122 |
+
|
123 |
+
# Fine-tune Tab
|
124 |
+
with gr.TabItem("π§ Fine-tune Model"):
|
125 |
+
gr.Markdown("### Fine-tune the existing model")
|
126 |
+
finetune_dataset = gr.Textbox(
|
127 |
+
label="Fine-tuning Dataset",
|
128 |
+
placeholder="Upload or paste your fine-tuning data...",
|
129 |
+
lines=5
|
130 |
+
)
|
131 |
+
with gr.Row():
|
132 |
+
finetune_epochs = gr.Number(label="Epochs", value=1, minimum=1)
|
133 |
+
finetune_lr = gr.Number(label="Learning Rate", value=5e-5, minimum=1e-6)
|
134 |
+
|
135 |
+
finetune_btn = gr.Button("π§ Start Fine-tuning", variant="primary")
|
136 |
+
finetune_output = gr.Textbox(label="Fine-tuning Output", lines=5, interactive=False)
|
137 |
+
|
138 |
+
finetune_btn.click(
|
139 |
+
fn=finetune_model,
|
140 |
+
inputs=[finetune_dataset, finetune_epochs, finetune_lr],
|
141 |
+
outputs=finetune_output
|
142 |
+
)
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.36.1
|
2 |
+
spaces
|
3 |
+
torch
|
4 |
+
transformers
|
5 |
+
datasets
|
6 |
+
accelerate
|