Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_client import Client, handle_file
|
| 3 |
+
import re
|
| 4 |
+
import time
|
| 5 |
+
import os
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
# Load environment variables
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
# Get Hugging Face token from environment variable
|
| 12 |
+
hf_token = os.getenv("HUGGING_FACE_HUB_TOKEN")
|
| 13 |
+
|
| 14 |
+
# Initialize client with auth
|
| 15 |
+
client = Client(
|
| 16 |
+
"levihsu/OOTDiffusion",
|
| 17 |
+
hf_token=hf_token
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def generate_outfit(model_image, garment_image, n_samples=1, n_steps=20, image_scale=2, seed=-1):
|
| 22 |
+
if model_image is None or garment_image is None:
|
| 23 |
+
return None, "Please upload both model and garment images"
|
| 24 |
+
|
| 25 |
+
max_retries = 3
|
| 26 |
+
for attempt in range(max_retries):
|
| 27 |
+
try:
|
| 28 |
+
# Use the client to predict
|
| 29 |
+
result = client.predict(
|
| 30 |
+
vton_img=handle_file(model_image),
|
| 31 |
+
garm_img=handle_file(garment_image),
|
| 32 |
+
n_samples=n_samples,
|
| 33 |
+
n_steps=n_steps,
|
| 34 |
+
image_scale=image_scale,
|
| 35 |
+
seed=seed,
|
| 36 |
+
api_name="/process_hd"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# If result is a list, get the first item
|
| 40 |
+
if isinstance(result, list):
|
| 41 |
+
result = result[0]
|
| 42 |
+
|
| 43 |
+
# If result is a dictionary, try to get the image path
|
| 44 |
+
if isinstance(result, dict):
|
| 45 |
+
if 'image' in result:
|
| 46 |
+
return result['image'], None
|
| 47 |
+
else:
|
| 48 |
+
return None, "API returned unexpected format"
|
| 49 |
+
|
| 50 |
+
return result, None
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
error_msg = str(e)
|
| 54 |
+
if "exceeded your GPU quota" in error_msg:
|
| 55 |
+
wait_time_match = re.search(r'retry in (\d+:\d+:\d+)', error_msg)
|
| 56 |
+
wait_time = wait_time_match.group(1) if wait_time_match else "60:00" # Default to 1 hour
|
| 57 |
+
wait_seconds = sum(int(x) * 60 ** i for i, x in enumerate(reversed(wait_time.split(':')))) # Convert wait time to seconds
|
| 58 |
+
if attempt < max_retries - 1:
|
| 59 |
+
time.sleep(wait_seconds) # Wait before retrying
|
| 60 |
+
return None, f"GPU quota exceeded. Please wait {wait_time} before trying again."
|
| 61 |
+
else:
|
| 62 |
+
return None, f"Error: {str(e)}"
|
| 63 |
+
|
| 64 |
+
# Create Gradio interface
|
| 65 |
+
with gr.Blocks() as demo:
|
| 66 |
+
gr.Markdown("""
|
| 67 |
+
## Outfit Diffusion - Try On Virtual Outfits
|
| 68 |
+
|
| 69 |
+
⚠️ **Note**: This demo uses free GPU quota which is limited. To avoid errors:
|
| 70 |
+
- Use lower values for Steps (10-15) and Scale (1-2)
|
| 71 |
+
- Wait between attempts if you get a quota error
|
| 72 |
+
- Sign up for a Hugging Face account for more quota
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
""")
|
| 76 |
+
|
| 77 |
+
with gr.Row():
|
| 78 |
+
with gr.Column():
|
| 79 |
+
model_image = gr.Image(
|
| 80 |
+
label="Upload Model Image (person wearing clothes)",
|
| 81 |
+
type="filepath",
|
| 82 |
+
height=300
|
| 83 |
+
|
| 84 |
+
)
|
| 85 |
+
model_examples = [
|
| 86 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/ba5ba7978e7302e8ab5eb733cc7221394c4e6faf/model_5.png",
|
| 87 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/40dade4a04a827c0fdf63c6c70b42ef26480f391/01861_00.jpg",
|
| 88 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/3c4639c5fab3cdcd3239609dca5afee7b0677286/model_6.png",
|
| 89 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/0089171df270f4532eec3d80a8f36cc8218c6840/01008_00.jpg"
|
| 90 |
+
]
|
| 91 |
+
gr.Examples(examples=model_examples, inputs=model_image)
|
| 92 |
+
|
| 93 |
+
garment_image = gr.Image(
|
| 94 |
+
label="Upload Garment Image (clothing item)",
|
| 95 |
+
type="filepath",
|
| 96 |
+
height=300
|
| 97 |
+
)
|
| 98 |
+
garment_examples = [
|
| 99 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/180d4e2a1139071a8685a5edee7ab24bcf1639f5/03244_00.jpg",
|
| 100 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/584dda2c5ee1d8271a6cd06225c07db89c79ca03/04825_00.jpg",
|
| 101 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/a51938ec99f13e548d365a9ca6d794b6fe7462af/049949_1.jpg",
|
| 102 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/2d64241101189251ce415df84dc9205cda9a36ca/03032_00.jpg",
|
| 103 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/44aee6b576cae51eeb979311306375b56b7e0d8b/02305_00.jpg",
|
| 104 |
+
"https://levihsu-ootdiffusion.hf.space/file=/tmp/gradio/578dfa869dedb649e91eccbe566fc76435bb6bbe/049920_1.jpg"
|
| 105 |
+
]
|
| 106 |
+
gr.Examples(examples=garment_examples, inputs=garment_image)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
with gr.Column():
|
| 110 |
+
output_image = gr.Image(label="Generated Output")
|
| 111 |
+
error_text = gr.Markdown() # Add error display
|
| 112 |
+
|
| 113 |
+
with gr.Row():
|
| 114 |
+
with gr.Column():
|
| 115 |
+
n_samples = gr.Slider(
|
| 116 |
+
label="Number of Samples",
|
| 117 |
+
minimum=1,
|
| 118 |
+
maximum=5,
|
| 119 |
+
step=1,
|
| 120 |
+
value=1
|
| 121 |
+
)
|
| 122 |
+
n_steps = gr.Slider(
|
| 123 |
+
label="Steps (lower = faster, try 10-15)",
|
| 124 |
+
minimum=1,
|
| 125 |
+
maximum=50,
|
| 126 |
+
step=1,
|
| 127 |
+
value=10 # Reduced default
|
| 128 |
+
)
|
| 129 |
+
image_scale = gr.Slider(
|
| 130 |
+
label="Scale (lower = faster, try 1-2)",
|
| 131 |
+
minimum=1,
|
| 132 |
+
maximum=5,
|
| 133 |
+
step=1,
|
| 134 |
+
value=1 # Reduced default
|
| 135 |
+
)
|
| 136 |
+
seed = gr.Number(
|
| 137 |
+
label="Random Seed (-1 for random)",
|
| 138 |
+
value=-1
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
generate_button = gr.Button("Generate Outfit")
|
| 142 |
+
|
| 143 |
+
# Set up the action for the button
|
| 144 |
+
generate_button.click(
|
| 145 |
+
fn=generate_outfit,
|
| 146 |
+
inputs=[model_image, garment_image, n_samples, n_steps, image_scale, seed],
|
| 147 |
+
outputs=[output_image, error_text]
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Launch the app
|
| 151 |
+
demo.launch()
|