Spaces:
Paused
Paused
added chat
Browse files
app.py
CHANGED
|
@@ -1,59 +1,105 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
| 4 |
import numpy as np
|
| 5 |
-
|
| 6 |
from lavis.models import load_model_and_preprocess
|
| 7 |
-
|
| 8 |
|
| 9 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
-
|
| 12 |
model, vis_processors, _ = load_model_and_preprocess(
|
| 13 |
name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
|
| 14 |
)
|
| 15 |
|
| 16 |
|
| 17 |
-
def answer_question(image, prompt):
|
| 18 |
-
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
| 19 |
-
response = model.generate({"image": image, "prompt": f"Question: {prompt} Answer:"})
|
| 20 |
-
response = '\n'.join(response)
|
| 21 |
-
return response
|
| 22 |
-
|
| 23 |
def generate_caption(image, caption_type):
|
| 24 |
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
| 25 |
-
|
| 26 |
if caption_type == "Beam Search":
|
| 27 |
caption = model.generate({"image": image})
|
| 28 |
else:
|
| 29 |
-
caption = model.generate(
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
return caption
|
| 34 |
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
with gr.Blocks() as demo:
|
| 37 |
-
|
| 38 |
-
gr.Markdown(
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
with gr.Row():
|
| 43 |
with gr.Column():
|
| 44 |
input_image = gr.Image(label="Image", type="pil")
|
| 45 |
-
caption_type = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
btn_caption = gr.Button("Generate Caption")
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
question_txt = gr.Textbox(label="Question", lines=1)
|
| 49 |
btn_answer = gr.Button("Generate Answer")
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
from lavis.models import load_model_and_preprocess
|
| 7 |
+
from PIL import Image
|
| 8 |
|
| 9 |
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
|
|
| 11 |
model, vis_processors, _ = load_model_and_preprocess(
|
| 12 |
name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
|
| 13 |
)
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def generate_caption(image, caption_type):
|
| 17 |
image = vis_processors["eval"](image).unsqueeze(0).to(device)
|
| 18 |
+
|
| 19 |
if caption_type == "Beam Search":
|
| 20 |
caption = model.generate({"image": image})
|
| 21 |
else:
|
| 22 |
+
caption = model.generate(
|
| 23 |
+
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
caption = "\n".join(caption)
|
| 27 |
+
|
| 28 |
return caption
|
| 29 |
|
| 30 |
|
| 31 |
+
def chat(input_image, question, history):
|
| 32 |
+
history = history or []
|
| 33 |
+
question = question.lower()
|
| 34 |
+
|
| 35 |
+
image = vis_processors["eval"](input_image).unsqueeze(0).to(device)
|
| 36 |
+
|
| 37 |
+
clean = lambda x: x.replace("<p>", "").replace("</p>", "").replace("\n", "")
|
| 38 |
+
clean_h = lambda x: (clean(x[0]), clean(x[1]))
|
| 39 |
+
context = list(map(clean_h, history))
|
| 40 |
+
template = "Question: {} Answer: {}."
|
| 41 |
+
prompt = (
|
| 42 |
+
" ".join(
|
| 43 |
+
[template.format(context[i][0], context[i][1]) for i in range(len(context))]
|
| 44 |
+
)
|
| 45 |
+
+ " Question: "
|
| 46 |
+
+ question
|
| 47 |
+
+ " Answer:"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
response = model.generate({"image": image, "prompt": prompt})
|
| 51 |
+
history.append((question, response[0]))
|
| 52 |
+
|
| 53 |
+
return history, history
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def clear_chat(history):
|
| 57 |
+
return [], []
|
| 58 |
+
|
| 59 |
+
|
| 60 |
with gr.Blocks() as demo:
|
| 61 |
+
gr.Markdown("# BLIP-2")
|
| 62 |
+
gr.Markdown(
|
| 63 |
+
"## Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models"
|
| 64 |
+
)
|
| 65 |
+
gr.Markdown(
|
| 66 |
+
"This demo uses `OPT2.7B` weights. For more information please see [Github](https://github.com/salesforce/LAVIS/tree/main/projects/blip2) or [Paper](https://arxiv.org/abs/2301.12597)."
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
with gr.Row():
|
| 70 |
with gr.Column():
|
| 71 |
input_image = gr.Image(label="Image", type="pil")
|
| 72 |
+
caption_type = gr.Radio(
|
| 73 |
+
["Beam Search", "Nucleus Sampling"],
|
| 74 |
+
label="Caption Type",
|
| 75 |
+
value="Beam Search",
|
| 76 |
+
)
|
| 77 |
btn_caption = gr.Button("Generate Caption")
|
| 78 |
+
output_text = gr.Textbox(label="Answer", lines=5)
|
| 79 |
+
|
| 80 |
+
with gr.Column():
|
| 81 |
+
chatbot = gr.Chatbot().style(color_map=("green", "pink"))
|
| 82 |
+
chat_state = gr.State()
|
| 83 |
+
|
| 84 |
question_txt = gr.Textbox(label="Question", lines=1)
|
| 85 |
btn_answer = gr.Button("Generate Answer")
|
| 86 |
+
btn_clear = gr.Button("Clear Chat")
|
| 87 |
+
|
| 88 |
+
btn_caption.click(
|
| 89 |
+
generate_caption, inputs=[input_image, caption_type], outputs=[output_text]
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
btn_answer.click(
|
| 93 |
+
chat,
|
| 94 |
+
inputs=[input_image, question_txt, chat_state],
|
| 95 |
+
outputs=[chatbot, chat_state],
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
btn_clear.click(clear_chat, inputs=[chat_state], outputs=[chatbot, chat_state])
|
| 99 |
+
|
| 100 |
+
gr.Examples(
|
| 101 |
+
[["./merlion.png", "Beam Search", "which city is this?", None, None]],
|
| 102 |
+
inputs=[input_image, caption_type, question_txt, chat_state, chatbot],
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
demo.launch()
|