Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +91 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,93 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import timm
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
|
10 |
+
# Hide Streamlit warnings and UI elements
|
11 |
+
st.set_page_config(layout="wide")
|
12 |
+
st.markdown("""
|
13 |
+
<style>
|
14 |
+
footer {visibility: hidden;}
|
15 |
+
</style>
|
16 |
+
""", unsafe_allow_html=True)
|
17 |
+
|
18 |
+
# === Model Definition ===
|
19 |
+
class MobileViTSegmentation(nn.Module):
|
20 |
+
def __init__(self, encoder_name='mobilevit_s', pretrained=False):
|
21 |
+
super().__init__()
|
22 |
+
self.backbone = timm.create_model(encoder_name, features_only=True, pretrained=pretrained)
|
23 |
+
self.encoder_channels = self.backbone.feature_info.channels()
|
24 |
+
|
25 |
+
self.decoder = nn.Sequential(
|
26 |
+
nn.Conv2d(self.encoder_channels[-1], 128, kernel_size=3, padding=1),
|
27 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
28 |
+
nn.Conv2d(128, 64, kernel_size=3, padding=1),
|
29 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
30 |
+
nn.Conv2d(64, 32, kernel_size=3, padding=1),
|
31 |
+
nn.Upsample(scale_factor=2, mode='bilinear'),
|
32 |
+
nn.Conv2d(32, 1, kernel_size=1),
|
33 |
+
nn.Sigmoid()
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
feats = self.backbone(x)
|
38 |
+
out = self.decoder(feats[-1])
|
39 |
+
out = nn.functional.interpolate(out, size=(x.shape[2], x.shape[3]), mode='bilinear', align_corners=False)
|
40 |
+
return out
|
41 |
+
|
42 |
+
# === Load Model ===
|
43 |
+
@st.cache_resource
|
44 |
+
def load_model():
|
45 |
+
model = MobileViTSegmentation()
|
46 |
+
state_dict = torch.load("model/mobilevit_teeth_segmentation.pth", map_location="cpu")
|
47 |
+
model.load_state_dict(state_dict)
|
48 |
+
model.eval()
|
49 |
+
return model
|
50 |
+
|
51 |
+
model = load_model()
|
52 |
+
|
53 |
+
# === Preprocessing ===
|
54 |
+
def preprocess_image(image: Image.Image):
|
55 |
+
image = image.convert("RGB").resize((256, 256))
|
56 |
+
arr = np.array(image).astype(np.float32) / 255.0
|
57 |
+
arr = np.transpose(arr, (2, 0, 1)) # HWC → CHW
|
58 |
+
tensor = torch.tensor(arr).unsqueeze(0) # Add batch dim
|
59 |
+
return tensor
|
60 |
+
|
61 |
+
# === Postprocessing: Overlay Mask ===
|
62 |
+
def overlay_mask(image_pil, mask_tensor, threshold=0.7):
|
63 |
+
image = np.array(image_pil.resize((256, 256)))
|
64 |
+
mask = mask_tensor.squeeze().detach().numpy()
|
65 |
+
mask_bin = (mask > threshold).astype(np.uint8) * 255
|
66 |
+
|
67 |
+
mask_color = np.zeros_like(image)
|
68 |
+
mask_color[..., 2] = mask_bin # Blue mask
|
69 |
+
|
70 |
+
overlayed = cv2.addWeighted(image, 1.0, mask_color, 0.5, 0)
|
71 |
+
return overlayed
|
72 |
+
|
73 |
+
# === UI ===
|
74 |
+
st.title("🦷 Tooth Segmentation with MobileViT")
|
75 |
+
st.write("Upload an image to segment the **visible teeth area** using a lightweight MobileViT segmentation model.")
|
76 |
+
|
77 |
+
uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
|
78 |
+
|
79 |
+
if uploaded_file:
|
80 |
+
image = Image.open(uploaded_file)
|
81 |
+
tensor = preprocess_image(image)
|
82 |
+
|
83 |
+
with st.spinner("Segmenting..."):
|
84 |
+
with torch.no_grad():
|
85 |
+
pred = model(tensor)[0]
|
86 |
+
|
87 |
+
overlayed_img = overlay_mask(image, pred)
|
88 |
|
89 |
+
col1, col2 = st.columns(2)
|
90 |
+
with col1:
|
91 |
+
st.image(image, caption="Original Image", use_container_width=True)
|
92 |
+
with col2:
|
93 |
+
st.image(overlayed_img, caption="Tooth Mask Overlay", use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|