Spaces:
Runtime error
Runtime error
Create run_caption_ds.py
Browse files- run_caption_ds.py +143 -0
run_caption_ds.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from pathlib import Path
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
|
6 |
+
from datasets import load_dataset # 引入 Hugging Face Dataset
|
7 |
+
from tqdm import tqdm # 引入 tqdm 用于显示进度条
|
8 |
+
|
9 |
+
# Constants
|
10 |
+
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
11 |
+
VLM_PROMPT = "A descriptive caption for this image:\n"
|
12 |
+
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
|
13 |
+
CHECKPOINT_PATH = Path("wpkklhc6")
|
14 |
+
|
15 |
+
# Image Adapter
|
16 |
+
class ImageAdapter(nn.Module):
|
17 |
+
def __init__(self, input_features: int, output_features: int):
|
18 |
+
super().__init__()
|
19 |
+
self.linear1 = nn.Linear(input_features, output_features)
|
20 |
+
self.activation = nn.GELU()
|
21 |
+
self.linear2 = nn.Linear(output_features, output_features)
|
22 |
+
|
23 |
+
def forward(self, vision_outputs: torch.Tensor):
|
24 |
+
x = self.linear1(vision_outputs)
|
25 |
+
x = self.activation(x)
|
26 |
+
x = self.linear2(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
# Load models
|
30 |
+
def load_models():
|
31 |
+
print("Loading CLIP")
|
32 |
+
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
33 |
+
clip_model = AutoModel.from_pretrained(CLIP_PATH)
|
34 |
+
clip_model = clip_model.vision_model
|
35 |
+
clip_model.eval()
|
36 |
+
clip_model.requires_grad_(False)
|
37 |
+
clip_model.to("cuda")
|
38 |
+
|
39 |
+
print("Loading tokenizer")
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
|
41 |
+
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
|
42 |
+
|
43 |
+
print("Loading LLM")
|
44 |
+
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
|
45 |
+
text_model.eval()
|
46 |
+
|
47 |
+
print("Loading image adapter")
|
48 |
+
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
|
49 |
+
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
|
50 |
+
image_adapter.eval()
|
51 |
+
image_adapter.to("cuda")
|
52 |
+
|
53 |
+
return clip_processor, clip_model, tokenizer, text_model, image_adapter
|
54 |
+
|
55 |
+
# Generate caption
|
56 |
+
@torch.no_grad()
|
57 |
+
def generate_caption(input_image, clip_processor, clip_model, tokenizer, text_model, image_adapter):
|
58 |
+
torch.cuda.empty_cache()
|
59 |
+
|
60 |
+
# Preprocess image
|
61 |
+
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
62 |
+
image = image.to('cuda')
|
63 |
+
|
64 |
+
# Tokenize the prompt
|
65 |
+
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
66 |
+
|
67 |
+
# Embed image
|
68 |
+
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
69 |
+
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
|
70 |
+
image_features = vision_outputs.hidden_states[-2]
|
71 |
+
embedded_images = image_adapter(image_features)
|
72 |
+
embedded_images = embedded_images.to('cuda')
|
73 |
+
|
74 |
+
# Embed prompt
|
75 |
+
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
|
76 |
+
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
77 |
+
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
78 |
+
|
79 |
+
# Construct prompts
|
80 |
+
inputs_embeds = torch.cat([
|
81 |
+
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
82 |
+
embedded_images.to(dtype=embedded_bos.dtype),
|
83 |
+
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
84 |
+
], dim=1)
|
85 |
+
|
86 |
+
input_ids = torch.cat([
|
87 |
+
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
88 |
+
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
89 |
+
prompt,
|
90 |
+
], dim=1).to('cuda')
|
91 |
+
attention_mask = torch.ones_like(input_ids)
|
92 |
+
|
93 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
94 |
+
|
95 |
+
# Trim off the prompt
|
96 |
+
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
97 |
+
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
98 |
+
generate_ids = generate_ids[:, :-1]
|
99 |
+
|
100 |
+
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
101 |
+
|
102 |
+
return caption.strip()
|
103 |
+
|
104 |
+
# Main function
|
105 |
+
def main():
|
106 |
+
parser = argparse.ArgumentParser(description="Generate captions for images in a Hugging Face Dataset.")
|
107 |
+
parser.add_argument("dataset_name", type=str, help="Name of the Hugging Face Dataset")
|
108 |
+
parser.add_argument("--image_column", type=str, default="image", help="Name of the column containing images (default: 'image')")
|
109 |
+
parser.add_argument("--caption_column", type=str, default="caption", help="Name of the column to save captions (default: 'caption')")
|
110 |
+
parser.add_argument("--output_path", type=str, required=True, help="Path to save the dataset with captions")
|
111 |
+
args = parser.parse_args()
|
112 |
+
|
113 |
+
# Load models
|
114 |
+
clip_processor, clip_model, tokenizer, text_model, image_adapter = load_models()
|
115 |
+
|
116 |
+
# Load dataset
|
117 |
+
print(f"Loading dataset: {args.dataset_name}")
|
118 |
+
dataset = load_dataset(args.dataset_name)
|
119 |
+
|
120 |
+
# Generate captions for each image in the dataset
|
121 |
+
def add_caption(example):
|
122 |
+
try:
|
123 |
+
# Generate caption
|
124 |
+
caption = generate_caption(example[args.image_column], clip_processor, clip_model, tokenizer, text_model, image_adapter)
|
125 |
+
# Add caption to the example
|
126 |
+
example[args.caption_column] = caption
|
127 |
+
except Exception as e:
|
128 |
+
print(f"Error processing image: {e}")
|
129 |
+
example[args.caption_column] = "" # 如果出错,保存空字符串
|
130 |
+
return example
|
131 |
+
|
132 |
+
# Apply the function to the dataset
|
133 |
+
print("Generating captions...")
|
134 |
+
dataset = dataset.map(add_caption, desc="Generating captions")
|
135 |
+
|
136 |
+
# Save the dataset with captions
|
137 |
+
print(f"Saving dataset to {args.output_path}")
|
138 |
+
dataset.save_to_disk(args.output_path)
|
139 |
+
|
140 |
+
print("Done!")
|
141 |
+
|
142 |
+
if __name__ == "__main__":
|
143 |
+
main()
|