Spaces:
Runtime error
Runtime error
''' | |
git clone https://modelscope.cn/models/LLM-Research/Meta-Llama-3.1-8B | |
python run_caption_ds.py "svjack/Genshin-Impact-Couple-with-Tags-IID-Gender-Only-Two" --caption_column="joy-caption" --output_path="gen_couple_cap_dir" | |
''' | |
import argparse | |
from pathlib import Path | |
import torch | |
from torch import nn | |
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
from datasets import load_dataset # 引入 Hugging Face Dataset | |
from tqdm import tqdm # 引入 tqdm 用于显示进度条 | |
# Constants | |
CLIP_PATH = "google/siglip-so400m-patch14-384" | |
VLM_PROMPT = "A descriptive caption for this image:\n" | |
#MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" | |
MODEL_PATH = "Meta-Llama-3.1-8B" | |
CHECKPOINT_PATH = Path("wpkklhc6") | |
# Image Adapter | |
class ImageAdapter(nn.Module): | |
def __init__(self, input_features: int, output_features: int): | |
super().__init__() | |
self.linear1 = nn.Linear(input_features, output_features) | |
self.activation = nn.GELU() | |
self.linear2 = nn.Linear(output_features, output_features) | |
def forward(self, vision_outputs: torch.Tensor): | |
x = self.linear1(vision_outputs) | |
x = self.activation(x) | |
x = self.linear2(x) | |
return x | |
# Load models | |
def load_models(): | |
print("Loading CLIP") | |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
clip_model = AutoModel.from_pretrained(CLIP_PATH) | |
clip_model = clip_model.vision_model | |
clip_model.eval() | |
clip_model.requires_grad_(False) | |
clip_model.to("cuda") | |
print("Loading tokenizer") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) | |
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" | |
print("Loading LLM") | |
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) | |
text_model.eval() | |
print("Loading image adapter") | |
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size) | |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) | |
image_adapter.eval() | |
image_adapter.to("cuda") | |
return clip_processor, clip_model, tokenizer, text_model, image_adapter | |
# Generate caption | |
def generate_caption(input_image, clip_processor, clip_model, tokenizer, text_model, image_adapter): | |
torch.cuda.empty_cache() | |
# Preprocess image | |
image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
image = image.to('cuda') | |
# Tokenize the prompt | |
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) | |
# Embed image | |
with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True) | |
image_features = vision_outputs.hidden_states[-2] | |
embedded_images = image_adapter(image_features) | |
embedded_images = embedded_images.to('cuda') | |
# Embed prompt | |
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')) | |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" | |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) | |
# Construct prompts | |
inputs_embeds = torch.cat([ | |
embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
embedded_images.to(dtype=embedded_bos.dtype), | |
prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
], dim=1) | |
input_ids = torch.cat([ | |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
prompt, | |
], dim=1).to('cuda') | |
attention_mask = torch.ones_like(input_ids) | |
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
# Trim off the prompt | |
generate_ids = generate_ids[:, input_ids.shape[1]:] | |
if generate_ids[0][-1] == tokenizer.eos_token_id: | |
generate_ids = generate_ids[:, :-1] | |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
return caption.strip() | |
# Main function | |
def main(): | |
parser = argparse.ArgumentParser(description="Generate captions for images in a Hugging Face Dataset.") | |
parser.add_argument("dataset_name", type=str, help="Name of the Hugging Face Dataset") | |
parser.add_argument("--image_column", type=str, default="image", help="Name of the column containing images (default: 'image')") | |
parser.add_argument("--caption_column", type=str, default="caption", help="Name of the column to save captions (default: 'caption')") | |
parser.add_argument("--output_path", type=str, required=True, help="Path to save the dataset with captions") | |
args = parser.parse_args() | |
# Load models | |
clip_processor, clip_model, tokenizer, text_model, image_adapter = load_models() | |
# Load dataset | |
print(f"Loading dataset: {args.dataset_name}") | |
dataset = load_dataset(args.dataset_name) | |
len_ = len(dataset["train"]) | |
#len_ = 10 | |
# Initialize a list to store captions | |
captions = [] | |
# Generate captions for each image in the dataset | |
print("Generating captions...") | |
for idx, example in enumerate(tqdm(dataset["train"].select(range(len_)), desc="Processing images")): # 假设数据集是 "train" 拆分 | |
try: | |
# Generate caption | |
caption = generate_caption(example[args.image_column], clip_processor, clip_model, tokenizer, text_model, image_adapter) | |
captions.append(caption) | |
# Print the generated caption | |
print(f"Caption for image {idx + 1}: {caption}") | |
except Exception as e: | |
print(f"Error processing image {idx + 1}: {e}") | |
captions.append("") # 如果出错,保存空字符串 | |
print(f"Caption for image {idx + 1}: [Error]") | |
# Add captions to the dataset | |
print("Adding captions to the dataset...") | |
dataset = dataset["train"].select(range(len_)).add_column(args.caption_column, captions) # 将 captions 添加到数据集 | |
# Save the dataset with captions | |
print(f"Saving dataset to {args.output_path}") | |
dataset.save_to_disk(args.output_path) | |
print("Done!") | |
if __name__ == "__main__": | |
main() |