joy-caption-pre-alpha / run_caption_ds.py
svjack's picture
Update run_caption_ds.py
6590a5e verified
raw
history blame
6.74 kB
'''
git clone https://modelscope.cn/models/LLM-Research/Meta-Llama-3.1-8B
python run_caption_ds.py "svjack/Genshin-Impact-Couple-with-Tags-IID-Gender-Only-Two" --caption_column="joy-caption" --output_path="gen_couple_cap_dir"
'''
import argparse
from pathlib import Path
import torch
from torch import nn
from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
from datasets import load_dataset # 引入 Hugging Face Dataset
from tqdm import tqdm # 引入 tqdm 用于显示进度条
# Constants
CLIP_PATH = "google/siglip-so400m-patch14-384"
VLM_PROMPT = "A descriptive caption for this image:\n"
#MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
MODEL_PATH = "Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path("wpkklhc6")
# Image Adapter
class ImageAdapter(nn.Module):
def __init__(self, input_features: int, output_features: int):
super().__init__()
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
def forward(self, vision_outputs: torch.Tensor):
x = self.linear1(vision_outputs)
x = self.activation(x)
x = self.linear2(x)
return x
# Load models
def load_models():
print("Loading CLIP")
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
clip_model = AutoModel.from_pretrained(CLIP_PATH)
clip_model = clip_model.vision_model
clip_model.eval()
clip_model.requires_grad_(False)
clip_model.to("cuda")
print("Loading tokenizer")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
print("Loading LLM")
text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
text_model.eval()
print("Loading image adapter")
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
image_adapter.eval()
image_adapter.to("cuda")
return clip_processor, clip_model, tokenizer, text_model, image_adapter
# Generate caption
@torch.no_grad()
def generate_caption(input_image, clip_processor, clip_model, tokenizer, text_model, image_adapter):
torch.cuda.empty_cache()
# Preprocess image
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
image = image.to('cuda')
# Tokenize the prompt
prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
# Embed image
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
image_features = vision_outputs.hidden_states[-2]
embedded_images = image_adapter(image_features)
embedded_images = embedded_images.to('cuda')
# Embed prompt
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
# Construct prompts
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
], dim=1).to('cuda')
attention_mask = torch.ones_like(input_ids)
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
# Trim off the prompt
generate_ids = generate_ids[:, input_ids.shape[1]:]
if generate_ids[0][-1] == tokenizer.eos_token_id:
generate_ids = generate_ids[:, :-1]
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
return caption.strip()
# Main function
def main():
parser = argparse.ArgumentParser(description="Generate captions for images in a Hugging Face Dataset.")
parser.add_argument("dataset_name", type=str, help="Name of the Hugging Face Dataset")
parser.add_argument("--image_column", type=str, default="image", help="Name of the column containing images (default: 'image')")
parser.add_argument("--caption_column", type=str, default="caption", help="Name of the column to save captions (default: 'caption')")
parser.add_argument("--output_path", type=str, required=True, help="Path to save the dataset with captions")
args = parser.parse_args()
# Load models
clip_processor, clip_model, tokenizer, text_model, image_adapter = load_models()
# Load dataset
print(f"Loading dataset: {args.dataset_name}")
dataset = load_dataset(args.dataset_name)
len_ = len(dataset["train"])
#len_ = 10
# Initialize a list to store captions
captions = []
# Generate captions for each image in the dataset
print("Generating captions...")
for idx, example in enumerate(tqdm(dataset["train"].select(range(len_)), desc="Processing images")): # 假设数据集是 "train" 拆分
try:
# Generate caption
caption = generate_caption(example[args.image_column], clip_processor, clip_model, tokenizer, text_model, image_adapter)
captions.append(caption)
# Print the generated caption
print(f"Caption for image {idx + 1}: {caption}")
except Exception as e:
print(f"Error processing image {idx + 1}: {e}")
captions.append("") # 如果出错,保存空字符串
print(f"Caption for image {idx + 1}: [Error]")
# Add captions to the dataset
print("Adding captions to the dataset...")
dataset = dataset["train"].select(range(len_)).add_column(args.caption_column, captions) # 将 captions 添加到数据集
# Save the dataset with captions
print(f"Saving dataset to {args.output_path}")
dataset.save_to_disk(args.output_path)
print("Done!")
if __name__ == "__main__":
main()