Spaces:
Runtime error
Runtime error
Upload qa_on_context.py
Browse files- qa_on_context.py +141 -0
qa_on_context.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#### py39_cp_cp
|
| 2 |
+
from zh_mt5_model import *
|
| 3 |
+
from en_t2t_model import *
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
os.environ['KMP_DUPLICATE_LIB_OK']='True'
|
| 7 |
+
|
| 8 |
+
import spacy
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
import re
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
from copy import deepcopy
|
| 15 |
+
import pathlib
|
| 16 |
+
|
| 17 |
+
import json
|
| 18 |
+
import pickle as pkl
|
| 19 |
+
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
from easynmt import EasyNMT
|
| 22 |
+
|
| 23 |
+
### https://huggingface.co/svjack/squad_gen_qst_zh_v0
|
| 24 |
+
path = "svjack/squad_gen_qst_zh_v0"
|
| 25 |
+
asker_zh = T5_B(path,
|
| 26 |
+
device = "cpu")
|
| 27 |
+
|
| 28 |
+
zh_nlp = spacy.load("zh_core_web_sm")
|
| 29 |
+
en_nlp = spacy.load("en_core_web_sm")
|
| 30 |
+
|
| 31 |
+
trans_model = EasyNMT('opus-mt')
|
| 32 |
+
|
| 33 |
+
def detect_language(text):
|
| 34 |
+
assert type(text) == type("")
|
| 35 |
+
# detect_list.append(trans_model.language_detection_fasttext(prompt))
|
| 36 |
+
lang = trans_model.language_detection_fasttext(text)
|
| 37 |
+
lang = lang.lower().strip()
|
| 38 |
+
if "zh" not in lang and "en" not in lang:
|
| 39 |
+
lang = "others"
|
| 40 |
+
if "zh" in lang:
|
| 41 |
+
lang = "zh"
|
| 42 |
+
if "en" in lang:
|
| 43 |
+
lang = "en"
|
| 44 |
+
assert lang in ["en", "zh", "others"]
|
| 45 |
+
return lang
|
| 46 |
+
|
| 47 |
+
def drop_duplicates_by_col(df, on_col = "aug_sparql_query"):
|
| 48 |
+
assert hasattr(df, "size")
|
| 49 |
+
assert on_col in df.columns.tolist()
|
| 50 |
+
req = []
|
| 51 |
+
set_ = set([])
|
| 52 |
+
for i, r in df.iterrows():
|
| 53 |
+
if r[on_col] not in set_:
|
| 54 |
+
set_.add(r[on_col])
|
| 55 |
+
req.append(r)
|
| 56 |
+
return pd.DataFrame(req)
|
| 57 |
+
|
| 58 |
+
def sent_with_ents(sent, en_nlp):
|
| 59 |
+
assert type(sent) == type("")
|
| 60 |
+
doc = en_nlp(sent)
|
| 61 |
+
return (sent, pd.Series(doc.ents).map(
|
| 62 |
+
lambda span: (span.text, span.label_)
|
| 63 |
+
).values.tolist())
|
| 64 |
+
|
| 65 |
+
def gen_ask_by_span_zh(asker ,sent, span):
|
| 66 |
+
if type(span) == type(""):
|
| 67 |
+
span = [span]
|
| 68 |
+
if not span:
|
| 69 |
+
return []
|
| 70 |
+
sent = sent.replace("|", "")
|
| 71 |
+
span = list(map(lambda x: x.replace("|", ""), span))
|
| 72 |
+
x = list(map(lambda x: "{}|{}".format(sent, x), span))
|
| 73 |
+
return list(map(
|
| 74 |
+
lambda y: asker.predict(y)
|
| 75 |
+
, x))
|
| 76 |
+
|
| 77 |
+
#### list return
|
| 78 |
+
def gen_ask_by_span(asker, sent, span, lang):
|
| 79 |
+
assert lang in ["en", "zh"]
|
| 80 |
+
if lang == "zh":
|
| 81 |
+
return gen_ask_by_span_zh(asker ,sent, span)
|
| 82 |
+
else:
|
| 83 |
+
return gen_ask_by_span_en(t2t, sent, span)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def filter_ent_cate(ent_list, maintain_cate_list = [
|
| 87 |
+
"DATE", "FAC", "GPE", "LOC", "PERSON"
|
| 88 |
+
]):
|
| 89 |
+
if not ent_list:
|
| 90 |
+
return []
|
| 91 |
+
return list(filter(lambda t2: t2[1] in maintain_cate_list, ent_list))
|
| 92 |
+
|
| 93 |
+
def batch_as_list(a, batch_size = int(100000)):
|
| 94 |
+
req = []
|
| 95 |
+
for ele in a:
|
| 96 |
+
if not req:
|
| 97 |
+
req.append([])
|
| 98 |
+
if len(req[-1]) < batch_size:
|
| 99 |
+
req[-1].append(ele)
|
| 100 |
+
else:
|
| 101 |
+
req.append([])
|
| 102 |
+
req[-1].append(ele)
|
| 103 |
+
return req
|
| 104 |
+
|
| 105 |
+
def gen_qst_to_df(paragraph,
|
| 106 |
+
nlp = zh_nlp,
|
| 107 |
+
asker = asker_zh,
|
| 108 |
+
nlp_input = None,
|
| 109 |
+
maintain_cate_list = [
|
| 110 |
+
"DATE", "FAC", "GPE", "LOC", "PERSON"
|
| 111 |
+
], limit_ents_size = 10, batch_size = 4
|
| 112 |
+
):
|
| 113 |
+
if limit_ents_size is None:
|
| 114 |
+
limit_ents_size = 10000
|
| 115 |
+
assert type(paragraph) == type("")
|
| 116 |
+
lang = detect_language(paragraph)
|
| 117 |
+
if lang != "zh":
|
| 118 |
+
lang = "en"
|
| 119 |
+
nlp = en_nlp if lang == "en" else zh_nlp
|
| 120 |
+
|
| 121 |
+
if nlp_input is None:
|
| 122 |
+
_, entity_list = sent_with_ents(paragraph, nlp)
|
| 123 |
+
else:
|
| 124 |
+
_, entity_list = deepcopy(nlp_input)
|
| 125 |
+
if maintain_cate_list:
|
| 126 |
+
entity_list = filter_ent_cate(entity_list, maintain_cate_list = maintain_cate_list)
|
| 127 |
+
entity_list = entity_list[:limit_ents_size]
|
| 128 |
+
if not entity_list:
|
| 129 |
+
return None
|
| 130 |
+
l = batch_as_list(entity_list, batch_size)
|
| 131 |
+
for ele in tqdm(l):
|
| 132 |
+
ents = list(map(lambda x: x[0], ele))
|
| 133 |
+
ent_cates = list(map(lambda x: x[1], ele))
|
| 134 |
+
#questions = gen_ask_by_span_zh(asker, paragraph, ents)
|
| 135 |
+
questions = gen_ask_by_span(asker, paragraph, ents, lang)
|
| 136 |
+
assert len(ele) == len(ent_cates) == len(questions)
|
| 137 |
+
#return [ele, ent_cates, questions, ans]
|
| 138 |
+
batch_l = list(map(pd.Series, [ents, ent_cates, questions]))
|
| 139 |
+
batch_df = pd.concat(batch_l, axis = 1)
|
| 140 |
+
batch_df.columns = ["entity", "entity_cate", "question",]
|
| 141 |
+
yield batch_df
|