File size: 7,862 Bytes
32fcb0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
#### English scope
#device = "cuda:0"
device = "cpu"
assert device.startswith("cpu") or device.startswith("cuda")
import sys
from predict import *
from transformers import (
T5ForConditionalGeneration,
MT5ForConditionalGeneration,
ByT5Tokenizer,
PreTrainedTokenizer,
T5TokenizerFast as T5Tokenizer,
MT5TokenizerFast as MT5Tokenizer,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BertTokenizer,
GPT2LMHeadModel,
)
import pandas as pd
import numpy as np
import re
from rapidfuzz import fuzz
from tqdm import tqdm
import numpy as np
from transformers import pipeline
import os
def shorten_exists(l, sim_threshold = 80, slice_size = 5):
req = []
for ele in l:
if not req:
req.append(ele)
else:
if max(map(lambda x: fuzz.ratio(x[:slice_size], ele[:slice_size]), req)) < sim_threshold:
req.append(ele)
return req
model_path = "svjack/summary-dialogue-eng"
tokenizer0 = T5Tokenizer.from_pretrained(model_path)
model0 = T5ForConditionalGeneration.from_pretrained(model_path)
if device.startswith("cuda"):
model = Obj(model0, tokenizer0, device = "cuda:0")
else:
model = Obj(model0, tokenizer0, device = "cpu")
if device.startswith("cuda"):
prompt_expand_model = pipeline('text-generation', model='daspartho/prompt-extend',
device = 0
)
else:
prompt_expand_model = pipeline('text-generation', model='daspartho/prompt-extend',
)
def loop_add(l, names = ["Tom", "Jack"]):
req = []
for i in range(len(l)):
ii = int(i % len(names))
req.append(
"{}:{}".format(names[ii], l[i])
)
return req
#### need some names drop in context(may not have ":")
#### '艾米-亚当斯在《沉睡的空洞》中,全身,双色大眼睛,咬牙切齿,恐怖,复杂的细节,电影,史诗,现实,解剖,汤姆-哈努卡,上光,艺术站,逼真,可怕'
def guess_name_candidates(context, cnt_threshold = 1):
from copy import deepcopy
assert type(context) == type("")
import re
l = re.findall(r"[\u4e00-\u9fa5a-zA-Z]+:", context)
l = list(filter(lambda x: x.strip(), l))
ori_l = deepcopy(l)
if not l:
return []
s = pd.Series(l).value_counts()
l = pd.Series(s[s > cnt_threshold].index.values.tolist()).map(lambda x: x[:-1]).values.tolist()
for ele in ori_l:
if len(ele[:-1]) not in l and (len(ele[:-1]) <= 3 or (
sum(map(len ,re.findall(r"[a-zA-Z]+:", ele))) == len(ele)
)):
l.append(ele[:-1])
l = list(set(l))
return l
def stdf_prompt_expander(x):
assert type(x) == type("")
return prompt_expand_model(x, num_return_sequences=1)[0]["generated_text"]
def simple_pred(summary, candidates = ["Tom", "Jack"], shorten_it = False,
summary_expander = lambda _:_, do_sample = True):
assert callable(summary_expander)
summary = summary_expander(summary)
pred_text = model.predict(
"{}\nCandidates:{}".format(summary, " ".join(candidates)),
do_sample = do_sample
)[0]
candidates_ = guess_name_candidates(pred_text)
l = re.split("{}".format("|".join(map(lambda x: "{}:".format(x), candidates_))) ,pred_text)
l = list(filter(lambda x: x.strip(), l))
if shorten_it:
l = shorten_exists(l)
#l = loop_add(l, candidates)
l = list(map(lambda x: x.strip(), l))
return l
def percentile_sort(df, perc_num = 101):
score_tuple_s = df["score_tuple"]
score_array = np.asarray(score_tuple_s.values.tolist())
perc_list = np.linspace(0, 100, perc_num).tolist()
low_to_high_perc_array = np.stack(list(map(lambda p: np.percentile(score_array, p, axis = 0), perc_list)))
def get_rank(array_):
lookup_list = pd.DataFrame(array_ - low_to_high_perc_array[::-1]).apply(lambda s: min(s) >= 0, axis = 1).tolist()
if True not in lookup_list:
return len(lookup_list)
return lookup_list.index(True)
rank_list = []
for i in range(score_array.shape[0]):
rank_list.append(get_rank(score_array[i, :]))
rank_s = pd.Series(rank_list)
return df.iloc[np.argsort(rank_s.values)]
def repeat_score(l, slice_size = 200 ,sim_threshold = 70):
from copy import deepcopy
assert type(l) == type([])
l = deepcopy(l)
l = sorted(l)
cnt_num = 0
set0 = set([])
for ele in l:
if ":" in ele:
ele = "".join(ele.split(":")[1:])
if set0 and max(map(lambda x: fuzz.ratio(x[:slice_size], ele[:slice_size]), set0)) > sim_threshold:
#if ele in set0:
cnt_num += 1
set0.add(ele)
return cnt_num
def sample_pred(context, times = 5, stdf_prompt_expander = lambda _: _):
df_req = []
for i in tqdm(range(times)):
ele = stdf_prompt_expander(context)
#ele = context
l = simple_pred(ele, do_sample = True)
df_req.append(
[ele, l]
)
df = pd.DataFrame(df_req)
df.columns = ["context", "dialogue"]
df["fuzz"] = df["dialogue"].map(
lambda x: fuzz.ratio(context, " ".join(x))
)
df["max_fuzz"] = df["dialogue"].map(
lambda x: max(map(lambda y: fuzz.ratio(y, context), x))
)
df["length"] = df["dialogue"].map(len)
df["rpt_score"] = df["dialogue"].map(repeat_score)
df["score_tuple"] = df.apply(
lambda x: (x["fuzz"], -1 * x["max_fuzz"], x["length"], -1 * x["rpt_score"]), axis = 1
)
df = percentile_sort(df)
return df
def sample_pred_wrapper(context, i2c_obj, times = 5, extend_by_diffusion = False):
assert type(context) == type("")
if any(map(lambda x: context.endswith(x), [".jpg", ".png", ".jpeg"])):
img_path = context
i2c_df = i2c_obj.predict_to_df([img_path])
assert i2c_df.size > 0
context = i2c_df["caption"].iloc[0]
else:
pass
assert type(context) == type("")
if extend_by_diffusion:
req_df = sample_pred(context, times = times, stdf_prompt_expander = stdf_prompt_expander)
else:
req_df = sample_pred(context, times = times, stdf_prompt_expander = lambda _: _)
return req_df
from image2caption import *
i2c_obj = Image2Caption(device = device)
if __name__ == "__main__":
from image2caption import *
i2c_obj = Image2Caption(device = device)
img_path = "../pic/bug.jpg"
img_path = "../pic/baobao.jpeg"
img_path = "../pic/cat0.jpg"
img_path = "../pic/cat.jpg"
os.path.exists(img_path)
df = sample_pred_wrapper(img_path, i2c_obj = i2c_obj)
df["dialogue"].values.tolist()
img_url = "https://datasets-server.huggingface.co/assets/metashift/--/metashift/train/2/image/image.jpg"
img_url = "https://datasets-server.huggingface.co/assets/metashift/--/metashift/train/6/image/image.jpg"
df = sample_pred_wrapper(img_url, i2c_obj = i2c_obj)
df["dialogue"].values.tolist()
text = "Goldfinger is the seventh novel in Ian Fleming's James Bond series. First published in 1959, it centres on Bond's investigation into the gold-smuggling activities of Auric Goldfinger, who is suspected of being connected to Soviet counter-intelligence. "
text
df = sample_pred_wrapper(text, i2c_obj = i2c_obj, times = 6)
df["dialogue"].values.tolist()
en_l = ['a statue of a bird on top of a rock',
'a woman standing in front of a flower arrangement',
'people walking down a dirt road',
'two pictures of a man with a beard',
'a sign that is on top of a sign',
'a woman dressed in a costume holding an umbrella',
'a woman in a red dress holding a flower in her hand',
'a little girl in a pink dress with a pink flower in her hair']
df = sample_pred(en_l[0], 5)
df["dialogue"].values.tolist()
df = sample_pred(en_l[0], 5, stdf_prompt_expander = stdf_prompt_expander)
df["dialogue"].values.tolist()
|