Create app_func.py
Browse files- app_func.py +458 -0
app_func.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#import spaces
|
2 |
+
import contextlib
|
3 |
+
import gc
|
4 |
+
import json
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
import shutil
|
10 |
+
import sys
|
11 |
+
import time
|
12 |
+
import itertools
|
13 |
+
from pathlib import Path
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image, ImageDraw
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch.utils.data import Dataset
|
22 |
+
from torchvision import transforms
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
|
25 |
+
import accelerate
|
26 |
+
from accelerate import Accelerator
|
27 |
+
from accelerate.logging import get_logger
|
28 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
29 |
+
|
30 |
+
from datasets import load_dataset
|
31 |
+
from huggingface_hub import create_repo, upload_folder
|
32 |
+
from packaging import version
|
33 |
+
from safetensors.torch import load_model
|
34 |
+
from peft import LoraConfig
|
35 |
+
import gradio as gr
|
36 |
+
import pandas as pd
|
37 |
+
|
38 |
+
import transformers
|
39 |
+
from transformers import (
|
40 |
+
AutoTokenizer,
|
41 |
+
PretrainedConfig,
|
42 |
+
CLIPVisionModelWithProjection,
|
43 |
+
CLIPImageProcessor,
|
44 |
+
CLIPProcessor,
|
45 |
+
)
|
46 |
+
|
47 |
+
import diffusers
|
48 |
+
from diffusers import (
|
49 |
+
AutoencoderKL,
|
50 |
+
DDPMScheduler,
|
51 |
+
ColorGuiderPixArtModel,
|
52 |
+
ColorGuiderSDModel,
|
53 |
+
UNet2DConditionModel,
|
54 |
+
PixArtTransformer2DModel,
|
55 |
+
ColorFlowPixArtAlphaPipeline,
|
56 |
+
ColorFlowSDPipeline,
|
57 |
+
UniPCMultistepScheduler,
|
58 |
+
)
|
59 |
+
from colorflow_utils.utils import *
|
60 |
+
|
61 |
+
sys.path.append('./BidirectionalTranslation')
|
62 |
+
from options.test_options import TestOptions
|
63 |
+
from models import create_model
|
64 |
+
from util import util
|
65 |
+
|
66 |
+
from huggingface_hub import snapshot_download
|
67 |
+
|
68 |
+
|
69 |
+
article = r"""
|
70 |
+
If ColorFlow is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/ColorFlow' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/ColorFlow)](https://github.com/TencentARC/ColorFlow)
|
71 |
+
---
|
72 |
+
|
73 |
+
📧 **Contact**
|
74 |
+
<br>
|
75 |
+
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
|
76 |
+
|
77 |
+
📝 **Citation**
|
78 |
+
<br>
|
79 |
+
If our work is useful for your research, please consider citing:
|
80 |
+
```bibtex
|
81 |
+
@misc{zhuang2024colorflow,
|
82 |
+
title={ColorFlow: Retrieval-Augmented Image Sequence Colorization},
|
83 |
+
author={Junhao Zhuang and Xuan Ju and Zhaoyang Zhang and Yong Liu and Shiyi Zhang and Chun Yuan and Ying Shan},
|
84 |
+
year={2024},
|
85 |
+
eprint={2412.11815},
|
86 |
+
archivePrefix={arXiv},
|
87 |
+
primaryClass={cs.CV},
|
88 |
+
url={https://arxiv.org/abs/2412.11815},
|
89 |
+
}
|
90 |
+
```
|
91 |
+
"""
|
92 |
+
|
93 |
+
model_global_path = snapshot_download(repo_id="TencentARC/ColorFlow", cache_dir='./colorflow/', repo_type="model")
|
94 |
+
print(model_global_path)
|
95 |
+
|
96 |
+
|
97 |
+
transform = transforms.Compose([
|
98 |
+
transforms.ToTensor(),
|
99 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
100 |
+
])
|
101 |
+
weight_dtype = torch.float16
|
102 |
+
|
103 |
+
# line model
|
104 |
+
line_model_path = model_global_path + '/LE/erika.pth'
|
105 |
+
line_model = res_skip()
|
106 |
+
line_model.load_state_dict(torch.load(line_model_path))
|
107 |
+
line_model.eval()
|
108 |
+
line_model.cuda()
|
109 |
+
|
110 |
+
# screen model
|
111 |
+
global opt
|
112 |
+
|
113 |
+
opt = TestOptions().parse(model_global_path)
|
114 |
+
ScreenModel = create_model(opt, model_global_path)
|
115 |
+
ScreenModel.setup(opt)
|
116 |
+
ScreenModel.eval()
|
117 |
+
|
118 |
+
image_processor = CLIPImageProcessor()
|
119 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda')
|
120 |
+
|
121 |
+
|
122 |
+
examples = [
|
123 |
+
[
|
124 |
+
"./assets/example_6/input.jpg",
|
125 |
+
["./assets/example_6/ref1.jpg", "./assets/example_6/ref2.jpg", "./assets/example_6/ref3.jpg"],
|
126 |
+
"GrayImage(ScreenStyle)",
|
127 |
+
"512x800",
|
128 |
+
0,
|
129 |
+
10
|
130 |
+
],
|
131 |
+
[
|
132 |
+
"原神漫画2019101113203050769.jpg",
|
133 |
+
["凯亚(20).png", "安柏 (20).png",],
|
134 |
+
"GrayImage(ScreenStyle)",
|
135 |
+
"512x800",
|
136 |
+
0,
|
137 |
+
10
|
138 |
+
],
|
139 |
+
[
|
140 |
+
"./assets/example_5/input.png",
|
141 |
+
["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"],
|
142 |
+
"GrayImage(ScreenStyle)",
|
143 |
+
"800x512",
|
144 |
+
0,
|
145 |
+
10
|
146 |
+
],
|
147 |
+
[
|
148 |
+
"./assets/example_4/input.jpg",
|
149 |
+
["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"],
|
150 |
+
"GrayImage(ScreenStyle)",
|
151 |
+
"640x640",
|
152 |
+
0,
|
153 |
+
10
|
154 |
+
],
|
155 |
+
[
|
156 |
+
"./assets/example_3/input.png",
|
157 |
+
["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"],
|
158 |
+
"GrayImage(ScreenStyle)",
|
159 |
+
"800x512",
|
160 |
+
0,
|
161 |
+
10
|
162 |
+
],
|
163 |
+
[
|
164 |
+
"./assets/example_2/input.png",
|
165 |
+
["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"],
|
166 |
+
"GrayImage(ScreenStyle)",
|
167 |
+
"800x512",
|
168 |
+
0,
|
169 |
+
10
|
170 |
+
],
|
171 |
+
[
|
172 |
+
"./assets/example_1/input.jpg",
|
173 |
+
["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"],
|
174 |
+
"Sketch",
|
175 |
+
"640x640",
|
176 |
+
1,
|
177 |
+
10
|
178 |
+
],
|
179 |
+
[
|
180 |
+
"./assets/example_0/input.jpg",
|
181 |
+
["./assets/example_0/ref1.jpg"],
|
182 |
+
"Sketch",
|
183 |
+
"640x640",
|
184 |
+
1,
|
185 |
+
10
|
186 |
+
],
|
187 |
+
]
|
188 |
+
|
189 |
+
global pipeline
|
190 |
+
global MultiResNetModel
|
191 |
+
|
192 |
+
#@spaces.GPU
|
193 |
+
def load_ckpt(input_style):
|
194 |
+
global pipeline
|
195 |
+
global MultiResNetModel
|
196 |
+
if input_style == "Sketch":
|
197 |
+
ckpt_path = model_global_path + '/sketch/'
|
198 |
+
rank = 128
|
199 |
+
pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS'
|
200 |
+
transformer = PixArtTransformer2DModel.from_pretrained(
|
201 |
+
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None
|
202 |
+
)
|
203 |
+
pixart_config = get_pixart_config()
|
204 |
+
|
205 |
+
ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path)
|
206 |
+
|
207 |
+
transformer_lora_config = LoraConfig(
|
208 |
+
r=rank,
|
209 |
+
lora_alpha=rank,
|
210 |
+
init_lora_weights="gaussian",
|
211 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"]
|
212 |
+
)
|
213 |
+
transformer.add_adapter(transformer_lora_config)
|
214 |
+
ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu')
|
215 |
+
transformer.load_state_dict(ckpt_key_t, strict=False)
|
216 |
+
|
217 |
+
transformer.to('cuda', dtype=weight_dtype)
|
218 |
+
ColorGuider.to('cuda', dtype=weight_dtype)
|
219 |
+
|
220 |
+
pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained(
|
221 |
+
pretrained_model_name_or_path,
|
222 |
+
transformer=transformer,
|
223 |
+
colorguider=ColorGuider,
|
224 |
+
safety_checker=None,
|
225 |
+
revision=None,
|
226 |
+
variant=None,
|
227 |
+
torch_dtype=weight_dtype,
|
228 |
+
)
|
229 |
+
pipeline = pipeline.to("cuda")
|
230 |
+
block_out_channels = [128, 128, 256, 512, 512]
|
231 |
+
|
232 |
+
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
|
233 |
+
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
|
234 |
+
MultiResNetModel.to('cuda', dtype=weight_dtype)
|
235 |
+
|
236 |
+
elif input_style == "GrayImage(ScreenStyle)":
|
237 |
+
ckpt_path = model_global_path + '/GraySD/'
|
238 |
+
rank = 64
|
239 |
+
pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
|
240 |
+
unet = UNet2DConditionModel.from_pretrained(
|
241 |
+
pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None
|
242 |
+
)
|
243 |
+
ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path)
|
244 |
+
ColorGuider.to('cuda', dtype=weight_dtype)
|
245 |
+
unet.to('cuda', dtype=weight_dtype)
|
246 |
+
|
247 |
+
pipeline = ColorFlowSDPipeline.from_pretrained(
|
248 |
+
pretrained_model_name_or_path,
|
249 |
+
unet=unet,
|
250 |
+
colorguider=ColorGuider,
|
251 |
+
safety_checker=None,
|
252 |
+
revision=None,
|
253 |
+
variant=None,
|
254 |
+
torch_dtype=weight_dtype,
|
255 |
+
)
|
256 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
257 |
+
unet_lora_config = LoraConfig(
|
258 |
+
r=rank,
|
259 |
+
lora_alpha=rank,
|
260 |
+
init_lora_weights="gaussian",
|
261 |
+
target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],#ff.net.0.proj ff.net.2
|
262 |
+
)
|
263 |
+
pipeline.unet.add_adapter(unet_lora_config)
|
264 |
+
pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False)
|
265 |
+
pipeline = pipeline.to("cuda")
|
266 |
+
block_out_channels = [128, 128, 256, 512, 512]
|
267 |
+
|
268 |
+
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
|
269 |
+
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
|
270 |
+
MultiResNetModel.to('cuda', dtype=weight_dtype)
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
global cur_input_style
|
277 |
+
cur_input_style = "Sketch"
|
278 |
+
load_ckpt(cur_input_style)
|
279 |
+
cur_input_style = "GrayImage(ScreenStyle)"
|
280 |
+
load_ckpt(cur_input_style)
|
281 |
+
cur_input_style = None
|
282 |
+
|
283 |
+
#@spaces.GPU
|
284 |
+
def fix_random_seeds(seed):
|
285 |
+
random.seed(seed)
|
286 |
+
np.random.seed(seed)
|
287 |
+
torch.manual_seed(seed)
|
288 |
+
if torch.cuda.is_available():
|
289 |
+
torch.cuda.manual_seed(seed)
|
290 |
+
torch.cuda.manual_seed_all(seed)
|
291 |
+
|
292 |
+
def process_multi_images(files):
|
293 |
+
images = [Image.open(file.name) for file in files]
|
294 |
+
imgs = []
|
295 |
+
for i, img in enumerate(images):
|
296 |
+
imgs.append(img)
|
297 |
+
return imgs
|
298 |
+
|
299 |
+
#@spaces.GPU
|
300 |
+
def extract_lines(image):
|
301 |
+
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
302 |
+
|
303 |
+
rows = int(np.ceil(src.shape[0] / 16)) * 16
|
304 |
+
cols = int(np.ceil(src.shape[1] / 16)) * 16
|
305 |
+
|
306 |
+
patch = np.ones((1, 1, rows, cols), dtype="float32")
|
307 |
+
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src
|
308 |
+
|
309 |
+
tensor = torch.from_numpy(patch).cuda()
|
310 |
+
|
311 |
+
with torch.no_grad():
|
312 |
+
y = line_model(tensor)
|
313 |
+
|
314 |
+
yc = y.cpu().numpy()[0, 0, :, :]
|
315 |
+
yc[yc > 255] = 255
|
316 |
+
yc[yc < 0] = 0
|
317 |
+
|
318 |
+
outimg = yc[0:src.shape[0], 0:src.shape[1]]
|
319 |
+
outimg = outimg.astype(np.uint8)
|
320 |
+
outimg = Image.fromarray(outimg)
|
321 |
+
torch.cuda.empty_cache()
|
322 |
+
return outimg
|
323 |
+
|
324 |
+
#@spaces.GPU
|
325 |
+
def to_screen_image(input_image):
|
326 |
+
global opt
|
327 |
+
global ScreenModel
|
328 |
+
input_image = input_image.convert('RGB')
|
329 |
+
input_image = get_ScreenVAE_input(input_image, opt)
|
330 |
+
h = input_image['h']
|
331 |
+
w = input_image['w']
|
332 |
+
ScreenModel.set_input(input_image)
|
333 |
+
fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True)
|
334 |
+
images=fake_B2[:,:,:h,:w]
|
335 |
+
im = util.tensor2im(images)
|
336 |
+
image_pil = Image.fromarray(im)
|
337 |
+
torch.cuda.empty_cache()
|
338 |
+
return image_pil
|
339 |
+
|
340 |
+
#@spaces.GPU
|
341 |
+
def extract_line_image(query_image_, input_style, resolution):
|
342 |
+
if resolution == "640x640":
|
343 |
+
tar_width = 640
|
344 |
+
tar_height = 640
|
345 |
+
elif resolution == "512x800":
|
346 |
+
tar_width = 512
|
347 |
+
tar_height = 800
|
348 |
+
elif resolution == "800x512":
|
349 |
+
tar_width = 800
|
350 |
+
tar_height = 512
|
351 |
+
else:
|
352 |
+
gr.Info("Unsupported resolution")
|
353 |
+
|
354 |
+
query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5))
|
355 |
+
if input_style == "GrayImage(ScreenStyle)":
|
356 |
+
extracted_line = to_screen_image(query_image)
|
357 |
+
extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5)
|
358 |
+
input_context = extracted_line
|
359 |
+
elif input_style == "Sketch":
|
360 |
+
query_image = query_image.convert('L').convert('RGB')
|
361 |
+
extracted_line = extract_lines(query_image)
|
362 |
+
extracted_line = extracted_line.convert('L').convert('RGB')
|
363 |
+
input_context = extracted_line
|
364 |
+
torch.cuda.empty_cache()
|
365 |
+
return input_context, extracted_line, input_context
|
366 |
+
|
367 |
+
#@spaces.GPU(duration=180)
|
368 |
+
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps):
|
369 |
+
if VAE_input is None or input_context is None:
|
370 |
+
gr.Info("Please preprocess the image first")
|
371 |
+
raise ValueError("Please preprocess the image first")
|
372 |
+
global cur_input_style
|
373 |
+
global pipeline
|
374 |
+
global MultiResNetModel
|
375 |
+
if input_style != cur_input_style:
|
376 |
+
gr.Info(f"Loading {input_style} model...")
|
377 |
+
load_ckpt(input_style)
|
378 |
+
cur_input_style = input_style
|
379 |
+
gr.Info(f"{input_style} model loaded")
|
380 |
+
reference_images = process_multi_images(reference_images)
|
381 |
+
fix_random_seeds(seed)
|
382 |
+
if resolution == "640x640":
|
383 |
+
tar_width = 640
|
384 |
+
tar_height = 640
|
385 |
+
elif resolution == "512x800":
|
386 |
+
tar_width = 512
|
387 |
+
tar_height = 800
|
388 |
+
elif resolution == "800x512":
|
389 |
+
tar_width = 800
|
390 |
+
tar_height = 512
|
391 |
+
else:
|
392 |
+
gr.Info("Unsupported resolution")
|
393 |
+
validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2))
|
394 |
+
gr.Info("Image retrieval in progress...")
|
395 |
+
query_image_bw = process_image(input_context, int(tar_width), int(tar_height))
|
396 |
+
query_image = query_image_bw.convert('RGB')
|
397 |
+
query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5))
|
398 |
+
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images]
|
399 |
+
query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height)
|
400 |
+
reference_patches_pil = []
|
401 |
+
for reference_image in reference_images:
|
402 |
+
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height)
|
403 |
+
combined_image = None
|
404 |
+
with torch.no_grad():
|
405 |
+
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
|
406 |
+
query_embeddings = image_encoder(clip_img).image_embeds
|
407 |
+
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil]
|
408 |
+
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
|
409 |
+
reference_embeddings = image_encoder(clip_img).image_embeds
|
410 |
+
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1)
|
411 |
+
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist()
|
412 |
+
top_k = 3
|
413 |
+
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices]
|
414 |
+
combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white')
|
415 |
+
combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2))
|
416 |
+
idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]}
|
417 |
+
for i in range(2):
|
418 |
+
for j in range(2):
|
419 |
+
idx_list = idx_table[i * 2 + j]
|
420 |
+
for k in range(top_k):
|
421 |
+
ref_index = top_k_indices[i * 2 + j][k]
|
422 |
+
idx_y = idx_list[k][0]
|
423 |
+
idx_x = idx_list[k][1]
|
424 |
+
combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1))
|
425 |
+
gr.Info("Model inference in progress...")
|
426 |
+
generator = torch.Generator(device='cuda').manual_seed(seed)
|
427 |
+
image = pipeline(
|
428 |
+
"manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator
|
429 |
+
).images[0]
|
430 |
+
gr.Info("Post-processing image...")
|
431 |
+
with torch.no_grad():
|
432 |
+
width, height = image.size
|
433 |
+
new_width = width // 2
|
434 |
+
new_height = height // 2
|
435 |
+
left = (width - new_width) // 2
|
436 |
+
top = (height - new_height) // 2
|
437 |
+
right = left + new_width
|
438 |
+
bottom = top + new_height
|
439 |
+
center_crop = image.crop((left, top, right, bottom))
|
440 |
+
up_img = center_crop.resize(query_image_vae.size)
|
441 |
+
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype)
|
442 |
+
query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype)
|
443 |
+
|
444 |
+
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True)
|
445 |
+
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True)
|
446 |
+
|
447 |
+
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))]
|
448 |
+
|
449 |
+
|
450 |
+
hidden_list = MultiResNetModel(hidden_list_double)
|
451 |
+
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0]
|
452 |
+
|
453 |
+
output[output > 1] = 1
|
454 |
+
output[output < -1] = -1
|
455 |
+
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB")
|
456 |
+
gr.Info("Colorization complete!")
|
457 |
+
torch.cuda.empty_cache()
|
458 |
+
return high_res_image, up_img, image, query_image_bw
|