Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from pathlib import Path
|
4 |
+
from ingest_data import download_data_and_create_embedding
|
5 |
+
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_core.runnables.passthrough import RunnablePassthrough
|
8 |
+
from langchain_core.output_parsers import StrOutputParser
|
9 |
+
from langchain_core.prompts import ChatPromptTemplate
|
10 |
+
from langchain_openai import ChatOpenAI
|
11 |
+
from ingest_data import underlying_embeddings, openai_api_key
|
12 |
+
|
13 |
+
from langchain.chat_models import ChatOpenAI
|
14 |
+
from langchain.prompts import ChatPromptTemplate
|
15 |
+
from langchain.schema import StrOutputParser
|
16 |
+
|
17 |
+
import chainlit as cl
|
18 |
+
|
19 |
+
# load env variables
|
20 |
+
load_dotenv()
|
21 |
+
|
22 |
+
# Specify the path to the file you want to check
|
23 |
+
file_path = Path('./faiss_index/index.faiss')
|
24 |
+
|
25 |
+
# Check if the file exists
|
26 |
+
if file_path.exists():
|
27 |
+
print("Embeddings already done, use the saved index")
|
28 |
+
# Combine the retrieved data with the output of the LLM
|
29 |
+
vector_store = FAISS.load_local(
|
30 |
+
"faiss_index", underlying_embeddings, allow_dangerous_deserialization=True
|
31 |
+
)
|
32 |
+
else:
|
33 |
+
vector_store = download_data_and_create_embedding()
|
34 |
+
|
35 |
+
|
36 |
+
# create a prompt template to send to our LLM that will incorporate the documents from our retriever with the
|
37 |
+
# question we ask the chat model
|
38 |
+
prompt_template = ChatPromptTemplate.from_template(
|
39 |
+
"Answer the {question} based on the following {context}."
|
40 |
+
)
|
41 |
+
|
42 |
+
# create a retriever for our documents
|
43 |
+
retriever = vector_store.as_retriever()
|
44 |
+
|
45 |
+
# create a chat model / LLM
|
46 |
+
chat_model = ChatOpenAI(
|
47 |
+
model="gpt-4o-2024-05-13", temperature=0, api_key=openai_api_key
|
48 |
+
)
|
49 |
+
|
50 |
+
# create a parser to parse the output of our LLM
|
51 |
+
parser = StrOutputParser()
|
52 |
+
|
53 |
+
# 💻 Create the sequence (recipe)
|
54 |
+
runnable_chain = (
|
55 |
+
# TODO: How do we chain the output of our retriever, prompt, model and model output parser so that we can get a good answer to our query?
|
56 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
57 |
+
| prompt_template
|
58 |
+
| chat_model
|
59 |
+
| StrOutputParser()
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# Asynchronous execution (e.g., for a better a chatbot user experience)
|
64 |
+
async def call_chain_async(question):
|
65 |
+
output_chunks = await runnable_chain.ainvoke(question)
|
66 |
+
return output_chunks
|
67 |
+
|
68 |
+
|
69 |
+
# output_stream = asyncio.run(call_chain_async("What are some good sci-fi movies from the 1980s?"))
|
70 |
+
# print("".join(output_stream))
|
71 |
+
|
72 |
+
@cl.on_chat_start
|
73 |
+
async def on_chat_start():
|
74 |
+
model = ChatOpenAI(streaming=True)
|
75 |
+
prompt = ChatPromptTemplate.from_messages(
|
76 |
+
[
|
77 |
+
(
|
78 |
+
"system",
|
79 |
+
"You're a very knowledgeable historian who provides accurate and eloquent answers to historical questions.",
|
80 |
+
),
|
81 |
+
("human", "{question}"),
|
82 |
+
]
|
83 |
+
)
|
84 |
+
runnable = prompt | model | StrOutputParser()
|
85 |
+
cl.user_session.set("runnable", runnable)
|
86 |
+
|
87 |
+
|
88 |
+
# @cl.on_message
|
89 |
+
# async def on_message(message: cl.Message):
|
90 |
+
# runnable = cl.user_session.get("runnable") # type: Runnable
|
91 |
+
|
92 |
+
# msg = cl.Message(content="")
|
93 |
+
|
94 |
+
# async for chunk in runnable.astream(
|
95 |
+
# {"question": message.content},
|
96 |
+
# config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
|
97 |
+
# ):
|
98 |
+
# await msg.stream_token(chunk)
|
99 |
+
|
100 |
+
# await msg.send()
|
101 |
+
|
102 |
+
@cl.on_message
|
103 |
+
async def main(question):
|
104 |
+
response = await call_chain_async(question.content)
|
105 |
+
await cl.Message(content=response).send()
|