Spaces:
Runtime error
Runtime error
import asyncio | |
import os | |
import chainlit as cl | |
from langchain_community.vectorstores import FAISS | |
from langchain_openai import OpenAIEmbeddings | |
from langchain_core.runnables.passthrough import RunnablePassthrough | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI | |
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableConfig | |
from langchain.prompts import PromptTemplate | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
underlying_embeddings = OpenAIEmbeddings(api_key=openai_api_key) | |
async def on_chat_start(): | |
print("Embeddings already done, use the saved index") | |
# Combine the retrieved data with the output of the LLM | |
vector_store = FAISS.load_local( | |
"faiss_index", underlying_embeddings, allow_dangerous_deserialization=True | |
) | |
# create a prompt template to send to our LLM that will incorporate the documents from our retriever with the | |
# question we ask the chat model | |
prompt_template = ChatPromptTemplate.from_template( | |
"Answer the {question} based on the following {context}." | |
) | |
# create a retriever for our documents | |
retriever = vector_store.as_retriever() | |
# create a chat model / LLM | |
chat_model = ChatOpenAI( | |
model="gpt-3.5-turbo", temperature=0, api_key=openai_api_key | |
) | |
# create a parser to parse the output of our LLM | |
parser = StrOutputParser() | |
# π» Create the sequence (recipe) | |
runnable_chain = ( | |
# TODO: How do we chain the output of our retriever, prompt, model and model output parser so that we can get a good answer to our query? | |
{"context": retriever, "question": RunnablePassthrough()} | |
| prompt_template | |
| chat_model | |
| StrOutputParser() | |
) | |
cl.user_session.set("runnable", runnable) | |
async def on_message(message: cl.Message): | |
logger.info('Starting application') | |
# Your main application logic here | |
runnable = cl.user_session.get("runnable") # type: Runnable | |
msg = cl.Message(content="") | |
async with cl.Step(type="run", name="QA Assistant"): | |
await msg.stream_token("OAI says: ") | |
async for chunk in runn.astream( | |
message.content, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk) | |
await msg.send() | |