Spaces:
Runtime error
Runtime error
import asyncio | |
import logging | |
from dotenv import load_dotenv | |
from pathlib import Path | |
from ingest_data import download_data_and_create_embedding | |
from langchain_community.vectorstores import FAISS | |
from langchain_core.runnables.passthrough import RunnablePassthrough | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_openai import ChatOpenAI | |
from ingest_data import underlying_embeddings, openai_api_key | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.schema import StrOutputParser | |
import chainlit as cl | |
logging.basicConfig(level=logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
# load env variables | |
load_dotenv() | |
# Specify the path to the file you want to check | |
file_path = Path('./faiss_index/index.faiss') | |
# Check if the file exists | |
if file_path.exists(): | |
print("Embeddings already done, use the saved index") | |
# Combine the retrieved data with the output of the LLM | |
vector_store = FAISS.load_local( | |
"faiss_index", underlying_embeddings, allow_dangerous_deserialization=True | |
) | |
else: | |
vector_store = download_data_and_create_embedding() | |
# create a prompt template to send to our LLM that will incorporate the documents from our retriever with the | |
# question we ask the chat model | |
prompt_template = ChatPromptTemplate.from_template( | |
"Answer the {question} based on the following {context}." | |
) | |
# create a retriever for our documents | |
retriever = vector_store.as_retriever() | |
# create a chat model / LLM | |
chat_model = ChatOpenAI( | |
model="gpt-4o-2024-05-13", temperature=0, api_key=openai_api_key | |
) | |
# create a parser to parse the output of our LLM | |
parser = StrOutputParser() | |
# π» Create the sequence (recipe) | |
runnable_chain = ( | |
# TODO: How do we chain the output of our retriever, prompt, model and model output parser so that we can get a good answer to our query? | |
{"context": retriever, "question": RunnablePassthrough()} | |
| prompt_template | |
| chat_model | |
| StrOutputParser() | |
) | |
# Asynchronous execution (e.g., for a better a chatbot user experience) | |
async def call_chain_async(question): | |
output_chunks = await runnable_chain.ainvoke(question) | |
return output_chunks | |
# output_stream = asyncio.run(call_chain_async("What are some good sci-fi movies from the 1980s?")) | |
# print("".join(output_stream)) | |
async def on_chat_start(): | |
model = ChatOpenAI(streaming=True) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"You're a very knowledgeable historian who provides accurate and eloquent answers to historical questions.", | |
), | |
("human", "{question}"), | |
] | |
) | |
runnable = prompt | model | StrOutputParser() | |
cl.user_session.set("runnable", runnable) | |
async def on_message(message: cl.Message): | |
try: | |
logger.info('Starting application') | |
# Your main application logic here | |
runnable = cl.user_session.get("runnable") # type: Runnable | |
msg = cl.Message(content="") | |
async for chunk in runnable.astream( | |
{"question": message.content}, | |
config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]), | |
): | |
await msg.stream_token(chunk) | |
await cl.Message(content=response).send() | |
logger.info('Application finished successfully') | |
except Exception as e: | |
logger.exception("Unhandled exception: %s", e) | |
# @cl.on_message | |
# async def main(question): | |
# response = await call_chain_async(question.content) | |
# await cl.Message(content=response).send() | |