Spaces:
Runtime error
Runtime error
| # coding: utf-8 | |
| """ | |
| This file defines various neural network modules and utility functions, including convolutional and residual blocks, | |
| normalizations, and functions for spatial transformation and tensor manipulation. | |
| """ | |
| from torch import nn | |
| import torch.nn.functional as F | |
| import torch | |
| import torch.nn.utils.spectral_norm as spectral_norm | |
| import math | |
| import warnings | |
| def kp2gaussian(kp, spatial_size, kp_variance): | |
| """ | |
| Transform a keypoint into gaussian like representation | |
| """ | |
| mean = kp | |
| coordinate_grid = make_coordinate_grid(spatial_size, mean) | |
| number_of_leading_dimensions = len(mean.shape) - 1 | |
| shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape | |
| coordinate_grid = coordinate_grid.view(*shape) | |
| repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) | |
| coordinate_grid = coordinate_grid.repeat(*repeats) | |
| # Preprocess kp shape | |
| shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) | |
| mean = mean.view(*shape) | |
| mean_sub = (coordinate_grid - mean) | |
| out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) | |
| return out | |
| def make_coordinate_grid(spatial_size, ref, **kwargs): | |
| d, h, w = spatial_size | |
| x = torch.arange(w).type(ref.dtype).to(ref.device) | |
| y = torch.arange(h).type(ref.dtype).to(ref.device) | |
| z = torch.arange(d).type(ref.dtype).to(ref.device) | |
| # NOTE: must be right-down-in | |
| x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right | |
| y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom | |
| z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner | |
| yy = y.view(1, -1, 1).repeat(d, 1, w) | |
| xx = x.view(1, 1, -1).repeat(d, h, 1) | |
| zz = z.view(-1, 1, 1).repeat(1, h, w) | |
| meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) | |
| return meshed | |
| class ConvT2d(nn.Module): | |
| """ | |
| Upsampling block for use in decoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1): | |
| super(ConvT2d, self).__init__() | |
| self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride, | |
| padding=padding, output_padding=output_padding) | |
| self.norm = nn.InstanceNorm2d(out_features) | |
| def forward(self, x): | |
| out = self.convT(x) | |
| out = self.norm(out) | |
| out = F.leaky_relu(out) | |
| return out | |
| class ResBlock3d(nn.Module): | |
| """ | |
| Res block, preserve spatial resolution. | |
| """ | |
| def __init__(self, in_features, kernel_size, padding): | |
| super(ResBlock3d, self).__init__() | |
| self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) | |
| self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) | |
| self.norm1 = nn.BatchNorm3d(in_features, affine=True) | |
| self.norm2 = nn.BatchNorm3d(in_features, affine=True) | |
| def forward(self, x): | |
| out = self.norm1(x) | |
| out = F.relu(out) | |
| out = self.conv1(out) | |
| out = self.norm2(out) | |
| out = F.relu(out) | |
| out = self.conv2(out) | |
| out += x | |
| return out | |
| class UpBlock3d(nn.Module): | |
| """ | |
| Upsampling block for use in decoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
| super(UpBlock3d, self).__init__() | |
| self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
| padding=padding, groups=groups) | |
| self.norm = nn.BatchNorm3d(out_features, affine=True) | |
| def forward(self, x): | |
| out = F.interpolate(x, scale_factor=(1, 2, 2)) | |
| out = self.conv(out) | |
| out = self.norm(out) | |
| out = F.relu(out) | |
| return out | |
| class DownBlock2d(nn.Module): | |
| """ | |
| Downsampling block for use in encoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
| super(DownBlock2d, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) | |
| self.norm = nn.BatchNorm2d(out_features, affine=True) | |
| self.pool = nn.AvgPool2d(kernel_size=(2, 2)) | |
| def forward(self, x): | |
| out = self.conv(x) | |
| out = self.norm(out) | |
| out = F.relu(out) | |
| out = self.pool(out) | |
| return out | |
| class DownBlock3d(nn.Module): | |
| """ | |
| Downsampling block for use in encoder. | |
| """ | |
| def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): | |
| super(DownBlock3d, self).__init__() | |
| ''' | |
| self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
| padding=padding, groups=groups, stride=(1, 2, 2)) | |
| ''' | |
| self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, | |
| padding=padding, groups=groups) | |
| self.norm = nn.BatchNorm3d(out_features, affine=True) | |
| self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) | |
| def forward(self, x): | |
| out = self.conv(x) | |
| out = self.norm(out) | |
| out = F.relu(out) | |
| out = self.pool(out) | |
| return out | |
| class SameBlock2d(nn.Module): | |
| """ | |
| Simple block, preserve spatial resolution. | |
| """ | |
| def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): | |
| super(SameBlock2d, self).__init__() | |
| self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) | |
| self.norm = nn.BatchNorm2d(out_features, affine=True) | |
| if lrelu: | |
| self.ac = nn.LeakyReLU() | |
| else: | |
| self.ac = nn.ReLU() | |
| def forward(self, x): | |
| out = self.conv(x) | |
| out = self.norm(out) | |
| out = self.ac(out) | |
| return out | |
| class Encoder(nn.Module): | |
| """ | |
| Hourglass Encoder | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Encoder, self).__init__() | |
| down_blocks = [] | |
| for i in range(num_blocks): | |
| down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) | |
| self.down_blocks = nn.ModuleList(down_blocks) | |
| def forward(self, x): | |
| outs = [x] | |
| for down_block in self.down_blocks: | |
| outs.append(down_block(outs[-1])) | |
| return outs | |
| class Decoder(nn.Module): | |
| """ | |
| Hourglass Decoder | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Decoder, self).__init__() | |
| up_blocks = [] | |
| for i in range(num_blocks)[::-1]: | |
| in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) | |
| out_filters = min(max_features, block_expansion * (2 ** i)) | |
| up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) | |
| self.up_blocks = nn.ModuleList(up_blocks) | |
| self.out_filters = block_expansion + in_features | |
| self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) | |
| self.norm = nn.BatchNorm3d(self.out_filters, affine=True) | |
| def forward(self, x): | |
| out = x.pop() | |
| for up_block in self.up_blocks: | |
| out = up_block(out) | |
| skip = x.pop() | |
| out = torch.cat([out, skip], dim=1) | |
| out = self.conv(out) | |
| out = self.norm(out) | |
| out = F.relu(out) | |
| return out | |
| class Hourglass(nn.Module): | |
| """ | |
| Hourglass architecture. | |
| """ | |
| def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): | |
| super(Hourglass, self).__init__() | |
| self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) | |
| self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) | |
| self.out_filters = self.decoder.out_filters | |
| def forward(self, x): | |
| return self.decoder(self.encoder(x)) | |
| class SPADE(nn.Module): | |
| def __init__(self, norm_nc, label_nc): | |
| super().__init__() | |
| self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) | |
| nhidden = 128 | |
| self.mlp_shared = nn.Sequential( | |
| nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), | |
| nn.ReLU()) | |
| self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) | |
| self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) | |
| def forward(self, x, segmap): | |
| normalized = self.param_free_norm(x) | |
| segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') | |
| actv = self.mlp_shared(segmap) | |
| gamma = self.mlp_gamma(actv) | |
| beta = self.mlp_beta(actv) | |
| out = normalized * (1 + gamma) + beta | |
| return out | |
| class SPADEResnetBlock(nn.Module): | |
| def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): | |
| super().__init__() | |
| # Attributes | |
| self.learned_shortcut = (fin != fout) | |
| fmiddle = min(fin, fout) | |
| self.use_se = use_se | |
| # create conv layers | |
| self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) | |
| self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) | |
| if self.learned_shortcut: | |
| self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) | |
| # apply spectral norm if specified | |
| if 'spectral' in norm_G: | |
| self.conv_0 = spectral_norm(self.conv_0) | |
| self.conv_1 = spectral_norm(self.conv_1) | |
| if self.learned_shortcut: | |
| self.conv_s = spectral_norm(self.conv_s) | |
| # define normalization layers | |
| self.norm_0 = SPADE(fin, label_nc) | |
| self.norm_1 = SPADE(fmiddle, label_nc) | |
| if self.learned_shortcut: | |
| self.norm_s = SPADE(fin, label_nc) | |
| def forward(self, x, seg1): | |
| x_s = self.shortcut(x, seg1) | |
| dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) | |
| dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) | |
| out = x_s + dx | |
| return out | |
| def shortcut(self, x, seg1): | |
| if self.learned_shortcut: | |
| x_s = self.conv_s(self.norm_s(x, seg1)) | |
| else: | |
| x_s = x | |
| return x_s | |
| def actvn(self, x): | |
| return F.leaky_relu(x, 2e-1) | |
| def filter_state_dict(state_dict, remove_name='fc'): | |
| new_state_dict = {} | |
| for key in state_dict: | |
| if remove_name in key: | |
| continue | |
| new_state_dict[key] = state_dict[key] | |
| return new_state_dict | |
| class GRN(nn.Module): | |
| """ GRN (Global Response Normalization) layer | |
| """ | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
| def forward(self, x): | |
| Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
| Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
| return self.gamma * (x * Nx) + self.beta + x | |
| class LayerNorm(nn.Module): | |
| r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
| The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
| shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
| with shape (batch_size, channels, height, width). | |
| """ | |
| def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
| self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
| self.eps = eps | |
| self.data_format = data_format | |
| if self.data_format not in ["channels_last", "channels_first"]: | |
| raise NotImplementedError | |
| self.normalized_shape = (normalized_shape, ) | |
| def forward(self, x): | |
| if self.data_format == "channels_last": | |
| return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
| elif self.data_format == "channels_first": | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| def _no_grad_trunc_normal_(tensor, mean, std, a, b): | |
| # Cut & paste from PyTorch official master until it's in a few official releases - RW | |
| # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf | |
| def norm_cdf(x): | |
| # Computes standard normal cumulative distribution function | |
| return (1. + math.erf(x / math.sqrt(2.))) / 2. | |
| if (mean < a - 2 * std) or (mean > b + 2 * std): | |
| warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " | |
| "The distribution of values may be incorrect.", | |
| stacklevel=2) | |
| with torch.no_grad(): | |
| # Values are generated by using a truncated uniform distribution and | |
| # then using the inverse CDF for the normal distribution. | |
| # Get upper and lower cdf values | |
| l = norm_cdf((a - mean) / std) | |
| u = norm_cdf((b - mean) / std) | |
| # Uniformly fill tensor with values from [l, u], then translate to | |
| # [2l-1, 2u-1]. | |
| tensor.uniform_(2 * l - 1, 2 * u - 1) | |
| # Use inverse cdf transform for normal distribution to get truncated | |
| # standard normal | |
| tensor.erfinv_() | |
| # Transform to proper mean, std | |
| tensor.mul_(std * math.sqrt(2.)) | |
| tensor.add_(mean) | |
| # Clamp to ensure it's in the proper range | |
| tensor.clamp_(min=a, max=b) | |
| return tensor | |
| def drop_path(x, drop_prob=0., training=False, scale_by_keep=True): | |
| """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, | |
| the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... | |
| See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for | |
| changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use | |
| 'survival rate' as the argument. | |
| """ | |
| if drop_prob == 0. or not training: | |
| return x | |
| keep_prob = 1 - drop_prob | |
| shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
| random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
| if keep_prob > 0.0 and scale_by_keep: | |
| random_tensor.div_(keep_prob) | |
| return x * random_tensor | |
| class DropPath(nn.Module): | |
| """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). | |
| """ | |
| def __init__(self, drop_prob=None, scale_by_keep=True): | |
| super(DropPath, self).__init__() | |
| self.drop_prob = drop_prob | |
| self.scale_by_keep = scale_by_keep | |
| def forward(self, x): | |
| return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) | |
| def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): | |
| return _no_grad_trunc_normal_(tensor, mean, std, a, b) | |