Spaces:
Runtime error
Runtime error
| # coding: utf-8 | |
| """ | |
| This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation. | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| # from timm.models.layers import trunc_normal_, DropPath | |
| from .util import LayerNorm, DropPath, trunc_normal_, GRN | |
| __all__ = ['convnextv2_tiny'] | |
| class Block(nn.Module): | |
| """ ConvNeXtV2 Block. | |
| Args: | |
| dim (int): Number of input channels. | |
| drop_path (float): Stochastic depth rate. Default: 0.0 | |
| """ | |
| def __init__(self, dim, drop_path=0.): | |
| super().__init__() | |
| self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
| self.norm = LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.grn = GRN(4 * dim) | |
| self.pwconv2 = nn.Linear(4 * dim, dim) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
| def forward(self, x): | |
| input = x | |
| x = self.dwconv(x) | |
| x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.grn(x) | |
| x = self.pwconv2(x) | |
| x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
| x = input + self.drop_path(x) | |
| return x | |
| class ConvNeXtV2(nn.Module): | |
| """ ConvNeXt V2 | |
| Args: | |
| in_chans (int): Number of input image channels. Default: 3 | |
| num_classes (int): Number of classes for classification head. Default: 1000 | |
| depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
| dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
| drop_path_rate (float): Stochastic depth rate. Default: 0. | |
| head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
| """ | |
| def __init__( | |
| self, | |
| in_chans=3, | |
| depths=[3, 3, 9, 3], | |
| dims=[96, 192, 384, 768], | |
| drop_path_rate=0., | |
| **kwargs | |
| ): | |
| super().__init__() | |
| self.depths = depths | |
| self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers | |
| stem = nn.Sequential( | |
| nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
| LayerNorm(dims[0], eps=1e-6, data_format="channels_first") | |
| ) | |
| self.downsample_layers.append(stem) | |
| for i in range(3): | |
| downsample_layer = nn.Sequential( | |
| LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
| nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), | |
| ) | |
| self.downsample_layers.append(downsample_layer) | |
| self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks | |
| dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
| cur = 0 | |
| for i in range(4): | |
| stage = nn.Sequential( | |
| *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])] | |
| ) | |
| self.stages.append(stage) | |
| cur += depths[i] | |
| self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer | |
| # NOTE: the output semantic items | |
| num_bins = kwargs.get('num_bins', 66) | |
| num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints | |
| self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints | |
| # print('dims[-1]: ', dims[-1]) | |
| self.fc_scale = nn.Linear(dims[-1], 1) # scale | |
| self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins | |
| self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins | |
| self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins | |
| self.fc_t = nn.Linear(dims[-1], 3) # translation | |
| self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv2d, nn.Linear)): | |
| trunc_normal_(m.weight, std=.02) | |
| nn.init.constant_(m.bias, 0) | |
| def forward_features(self, x): | |
| for i in range(4): | |
| x = self.downsample_layers[i](x) | |
| x = self.stages[i](x) | |
| return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C) | |
| def forward(self, x): | |
| x = self.forward_features(x) | |
| # implicit keypoints | |
| kp = self.fc_kp(x) | |
| # pose and expression deformation | |
| pitch = self.fc_pitch(x) | |
| yaw = self.fc_yaw(x) | |
| roll = self.fc_roll(x) | |
| t = self.fc_t(x) | |
| exp = self.fc_exp(x) | |
| scale = self.fc_scale(x) | |
| ret_dct = { | |
| 'pitch': pitch, | |
| 'yaw': yaw, | |
| 'roll': roll, | |
| 't': t, | |
| 'exp': exp, | |
| 'scale': scale, | |
| 'kp': kp, # canonical keypoint | |
| } | |
| return ret_dct | |
| def convnextv2_tiny(**kwargs): | |
| model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) | |
| return model | |