Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| from models.modules.utils import build_act_layer, build_norm_layer | |
| class StemLayer(nn.Module): | |
| r""" Stem layer of InternImage | |
| Args: | |
| in_channels (int): number of input channels | |
| out_channels (int): number of output channels | |
| act_layer (str): activation layer | |
| norm_layer (str): normalization layer | |
| """ | |
| def __init__(self, | |
| in_channels=3+1, | |
| inter_channels=48, | |
| out_channels=96, | |
| act_layer='GELU', | |
| norm_layer='BN'): | |
| super().__init__() | |
| self.conv1 = nn.Conv2d(in_channels, | |
| inter_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| self.norm1 = build_norm_layer( | |
| inter_channels, norm_layer, 'channels_first', 'channels_first' | |
| ) | |
| self.act = build_act_layer(act_layer) | |
| self.conv2 = nn.Conv2d(inter_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=1, | |
| padding=1) | |
| self.norm2 = build_norm_layer( | |
| out_channels, norm_layer, 'channels_first', 'channels_first' | |
| ) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = self.norm1(x) | |
| x = self.act(x) | |
| x = self.conv2(x) | |
| x = self.norm2(x) | |
| return x | |