Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Set page config
|
| 8 |
+
st.set_page_config(page_title="Rice Disease Classifier", page_icon="🌾")
|
| 9 |
+
|
| 10 |
+
# Constants from your training
|
| 11 |
+
IMG_SIZE = (224, 224)
|
| 12 |
+
CLASS_NAMES = ['Bacterial_leaf_blight', 'Brown_spot', 'Healthy', 'Leaf_blast']
|
| 13 |
+
|
| 14 |
+
# Cache the model loading
|
| 15 |
+
@st.cache_resource
|
| 16 |
+
def load_model():
|
| 17 |
+
return tf.keras.models.load_model('rice_disease_model.keras')
|
| 18 |
+
|
| 19 |
+
# Load model
|
| 20 |
+
try:
|
| 21 |
+
model = load_model()
|
| 22 |
+
except Exception as e:
|
| 23 |
+
st.error(f"Error loading model: {str(e)}")
|
| 24 |
+
st.stop()
|
| 25 |
+
|
| 26 |
+
# Preprocessing function
|
| 27 |
+
def preprocess_image(image):
|
| 28 |
+
image = image.resize(IMG_SIZE)
|
| 29 |
+
img_array = tf.keras.utils.img_to_array(image)
|
| 30 |
+
img_array = tf.expand_dims(img_array, 0) # Create batch axis
|
| 31 |
+
img_array = tf.keras.applications.mobilenet_v2.preprocess_input(img_array)
|
| 32 |
+
return img_array
|
| 33 |
+
|
| 34 |
+
# Streamlit interface
|
| 35 |
+
st.title("Rice Disease Classifier 🌾")
|
| 36 |
+
st.write("Upload an image of a rice leaf for disease diagnosis")
|
| 37 |
+
|
| 38 |
+
uploaded_file = st.file_uploader("Choose an image...",
|
| 39 |
+
type=["jpg", "jpeg", "png", "webp"])
|
| 40 |
+
|
| 41 |
+
if uploaded_file is not None:
|
| 42 |
+
try:
|
| 43 |
+
# Read and display image
|
| 44 |
+
image = Image.open(uploaded_file).convert('RGB')
|
| 45 |
+
st.image(image, caption="Uploaded Image", use_container_width=True) # Fixed parameter here
|
| 46 |
+
|
| 47 |
+
# Preprocess and predict
|
| 48 |
+
with st.spinner('Analyzing...'):
|
| 49 |
+
processed_image = preprocess_image(image)
|
| 50 |
+
predictions = model.predict(processed_image)
|
| 51 |
+
predicted_class = CLASS_NAMES[np.argmax(predictions[0])]
|
| 52 |
+
confidence = np.max(predictions[0]) * 100
|
| 53 |
+
|
| 54 |
+
# Display results
|
| 55 |
+
st.subheader("Results")
|
| 56 |
+
st.success(f"Predicted Disease: **{predicted_class}**")
|
| 57 |
+
st.info(f"Confidence: **{confidence:.2f}%**")
|
| 58 |
+
|
| 59 |
+
# Show probability distribution
|
| 60 |
+
st.subheader("Class Probabilities")
|
| 61 |
+
for class_name, prob in zip(CLASS_NAMES, predictions[0]):
|
| 62 |
+
st.progress(float(prob), text=f"{class_name}: {prob*100:.2f}%")
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
st.error(f"Error processing image: {str(e)}")
|